ﻻ يوجد ملخص باللغة العربية
We present in detail the implementation of the Blaizot-Mendez-Wschebor (BMW) approximation scheme of the nonperturbative renormalization group, which allows for the computation of the full momentum dependence of correlation functions. We discuss its signification and its relation with other schemes, in particular the derivative expansion. Quantitative results are presented for the testground of scalar O(N) theories. Besides critical exponents which are zero-momentum quantities, we compute in three dimensions in the whole momentum range the two-point function at criticality and, in the high temperature phase, the universal structure factor. In all cases, we find very good agreement with the best existing results.
We demonstrate the power of a recently-proposed approximation scheme for the non-perturbative renormalization group that gives access to correlation functions over their full momentum range. We solve numerically the leading-order flow equations obtai
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow e
We propose a modification of the non-perturbative renormalization-group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (loca
In this paper we study the $c$-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the $c$-function along trajectories of the non-perturbative renormalization group flow gi
We use a non-perturbative renormalization-group technique to study interacting bosons at zero temperature. Our approach reveals the instability of the Bogoliubov fixed point when $dleq 3$ and yields the exact infrared behavior in all dimensions $d>1$