ﻻ يوجد ملخص باللغة العربية
We propose a test for the circular Unruh effect using certain atoms - fluorine and oxygen. For these atoms the centripetal acceleration of the outer shell electrons implies an effective Unruh temperature in the range 1000 - 2000 K. This range of Unruh temperatures is large enough to shift the expected occupancy of the lowest energy level and nearby energy levels. In effect the Unruh temperature changes the expected pure ground state, with all the electrons in the lowest energy level, to a mixed state with some larger than expected occupancy of states near to the lowest energy level. Examining these atoms at low background temperatures and finding a larger than expected number of electrons in low lying excited levels, beyond what is expected due to the background thermal excitation, would provide experimental evidence for the Unruh effect.
Total entropy generated by the Unruh effect is calculated within the framework of information theory. In contrast to previous studies, here the calculations are done for the finite time of existence of the non-inertial reference frame. In this case o
We present a general method to determine the entropy current of relativistic matter at local thermodynamic equilibrium in quantum statistical mechanics. Provided that the local equilibrium operator is bounded from below and its lowest lying eigenvect
We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculat
The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundament
We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic freq