ﻻ يوجد ملخص باللغة العربية
Topological photonics aims to utilize topological photonic bands and corresponding edge modes to implement robust light manipulation, which can be readily achieved in the linear regime of light-matter interaction. Importantly, unlike solid state physics, the common test bed for new ideas in topological physics, topological photonics provide an ideal platform to study wave mixing and other nonlinear interactions. These are well-known topics in classical nonlinear optics but largely unexplored in the context of topological photonics. Here, we investigate nonlinear interactions of one-way edge-modes in frequency mixing processes in topological photonic crystals. We present a detailed analysis of the band topology of two-dimensional photonic crystals with hexagonal symmetry and demonstrate that nonlinear optical processes, such as second- and third-harmonic generation can be conveniently implemented via one-way edge modes of this setup. Moreover, we demonstrate that more exotic phenomena, such as slow-light enhancement of nonlinear interactions and harmonic generation upon interaction of backward-propagating (left-handed) edge modes can also be realized. Our work opens up new avenues towards topology-protected frequency mixing processes in photonics.
We have theoretically and experimentally achieved large-area one-way transport by using heterostructures consisting of a domain of an ordinary photonic crystal (PC) sandwiched between two domains of magnetic PCs. The non-magnetized domain carries two
We show theoretically that, in the limit of weak dispersion, one-dimensional (1D) binary centrosymmetric photonic crystals can support topological edge modes in all photonic band gaps. By analyzing their bulk band topology, these harmonic topological
In this paper, the photonic quantum spin Hall effect (PQSHE) is realized in dielectric two-dimensional (2D) honeycomb lattice photonic crystal (PC) by stretching and shrinking the honeycomb unit cell. Combining two honeycomb lattice PCs with a common
Here, the frequency degree of freedom is introduced into valley photonic crystals with dual band gaps. Based on the high-order plane wave expansion model, we derive an effective Hamiltonian which characterizes dual band gaps. Metallic valley photonic
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theorie