ﻻ يوجد ملخص باللغة العربية
Motivated by predictions of a substantial contribution of the buckling vibration of the CuO2 layers to d-wave superconductivity in the cuprates, we have performed an inelastic neutron scattering study of this phonon in an array of untwinned crystals of YBa2Cu3O7. The data reveal a pronounced softening of the phonon at the in-plane wave vector q = (0, 0.3) upon cooling below ~ 105 K, but no corresponding anomaly at q = (0.3, 0). Based on the observed in-plane anisotropy, we argue that the electron-phonon interaction responsible for this anomaly supports an electronic instability associated with a uniaxial charge-density modulation and does not mediate d-wave superconductivity.
The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T_N = 138 K. A prominent in-plane infrared-active mode is observed at 253 cm^{-1} (31.4 meV) at 295
We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtaine
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies (~10 meV), which is localized in wavevector about the
This paper, I, presents new results from neutron inelastic scattering experiments on single crystals of UPd2Al3. The focus is on the experimental position whilst the sequel, II, advances theoretical perspectives. We present a detailed and complete ch