ترغب بنشر مسار تعليمي؟ اضغط هنا

Itinerant Spin Excitations in SrFe2As2 Measured by Inelastic Neutron Scattering

196   0   0.0 ( 0 )
 نشر من قبل Russell Ewings
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local-moment J_1-J2 model implies very different in-plane nearest-neighbor exchange parameters along the $a$ and $b$ directions, both in the orthorhombic and tetragonal phases. However, the spectrum calculated from the J1-J2 model deviates significantly from our data. We show that the qualitative features that cannot be described by the J1-J2 model are readily explained by calculations from a 5-band itinerant mean-field model.



قيم البحث

اقرأ أيضاً

How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) expe riments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of Tc, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors.
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies (~10 meV), which is localized in wavevector about the origin of two-dimensional reciprocal space. The signal is highly dispersive, and decreases in intensity with increasing temperature. We interpret these observations as direct evidence for the existence of ferromagnetic spin fluctuations within the cobalt-oxygen layers.
158 - K. Matan , R. Morinaga , K. Iida 2009
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2, a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy of 9.8(4) meV. The in-plane spin-wave velocity v_ab and out-of-plane spin-wave velocity v_c measured at 12 meV are 280(150) and 57(7) meV A, respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At T_N=136(1) K, the gap closes, and quasi-elastic scattering is observed above T_N, indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes rodlike, characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.
151 - T. Nomura , Y. Harada , H. Niwa 2016
Low-energy electron excitation spectra were measured on a single crystal of a typical iron-based superconductor PrFeAsO$_{0.7}$ using resonant inelastic X-ray scattering (RIXS) at the Fe-$L_3$ edge. Characteristic RIXS features are clearly observed a round 0.5, 1-1.5 and 2-3 eV energy losses. These excitations are analyzed microscopically with theoretical calculations using a 22-orbital model derived from first-principles electronic structure calculation. Based on the agreement with the experiment, the RIXS features are assigned to Fe-$d$ orbital excitations which, at low energies, are accompanied by spin flipping and dominated by Fe $d_{yz}$ and $d_{xz}$ orbital characters. Furthermore, our calculations suggest dispersive momentum dependence of the RIXS excitations below 0.5 eV, and predict remarkable splitting and merging of the lower-energy excitations in momentum space. Those excitations, which were not observed in the present experiment, highlight the potential of RIXS with an improved energy resolution to unravel new details of the electronic structure of the iron-based superconductors.
We report neutron inelastic scattering measurements on the stoichiometric iron-based superconductor LiFeAs. We find evidence for (i) magnetic scattering consistent with strong antiferromagnetic fluctuations, and (ii) an increase in intensity in the s uperconducting state at low energies, similar to the resonant magnetic excitation observed in other iron-based superconductors. The results do not support a recent theoretical prediction of spin-triplet p-wave superconductivity in LiFeAs, and instead suggest that the mechanism of superconductivity is similar to that in the other iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا