ترغب بنشر مسار تعليمي؟ اضغط هنا

WebCloud: Recruiting web browsers for content distribution

165   0   0.0 ( 0 )
 نشر من قبل Fangfei Zhou
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We are at the beginning of a shift in how content is created and exchanged over the web. While content was previously created primarily by a small set of entities, today, individual users -- empowered by devices like digital cameras and services like online social networks -- are creating content that represents a significant fraction of Internet traffic. As a result, content today is increasingly generated and exchanged at the edge of the network. Unfortunately, the existing techniques and infrastructure that are still used to serve this content, such as centralized content distribution networks, are ill-suited for these new patterns of content exchange. In this paper, we take a first step towards addressing this situation by introducing WebCloud, a content distribution system for online social networking sites that works by re- purposing web browsers to help serve content. In other words, when a user browses content, WebCloud tries to fetch it from one of that users friends browsers, instead of from the social networking site. The result is a more direct exchange of content ; essentially, WebCloud leverages the spatial and temporal locality of interest between social network users. Because WebCloud is built using techniques already present in many web browsers, it can be applied today to many social networking sites. We demonstrate the practicality of WebCloud with microbenchmarks, simulations, and a prototype deployment.



قيم البحث

اقرأ أيضاً

The proliferation of web applications has essentially transformed modern browsers into small but powerful operating systems. Upon visiting a website, user devices run implicitly trusted script code, the execution of which is confined within the brows er to prevent any interference with the users system. Recent JavaScript APIs, however, provide advanced capabilities that not only enable feature-rich web applications, but also allow attackers to perform malicious operations despite the confined nature of JavaScript code execution. In this paper, we demonstrate the powerful capabilities that modern browser APIs provide to attackers by presenting MarioNet: a framework that allows a remote malicious entity to control a visitors browser and abuse its resources for unwanted computation or harmful operations, such as cryptocurrency mining, password-cracking, and DDoS. MarioNet relies solely on already available HTML5 APIs, without requiring the installation of any additional software. In contrast to previous browser-based botnets, the persistence and stealthiness characteristics of MarioNet allow the malicious computations to continue in the background of the browser even after the user closes the window or tab of the initial malicious website. We present the design, implementation, and evaluation of a prototype system, MarioNet, that is compatible with all major browsers, and discuss potential defense strategies to counter the threat of such persistent in-browser attacks. Our main goal is to raise awareness regarding this new class of attacks, and inform the design of future browser APIs so that they provide a more secure client-side environment for web applications.
In modern social media platforms, an effective content recommendation should benefit both creators to bring genuine benefits to them and consumers to help them get really interesting content. To address the limitations of existing methods for social recommendation, we propose Social Explorative Attention Network (SEAN), a social recommendation framework that uses a personalized content recommendation model to encourage personal interests driven recommendation. SEAN has t
100 - Zhao Yan , Duyu Tang , Nan Duan 2017
Understanding the connections between unstructured text and semi-structured table is an important yet neglected problem in natural language processing. In this work, we focus on content-based table retrieval. Given a query, the task is to find the mo st relevant table from a collection of tables. Further progress towards improving this area requires powerful models of semantic matching and richer training and evaluation resources. To remedy this, we present a ranking based approach, and implement both carefully designed features and neural network architectures to measure the relevance between a query and the content of a table. Furthermore, we release an open-domain dataset that includes 21,113 web queries for 273,816 tables. We conduct comprehensive experiments on both real world and synthetic datasets. Results verify the effectiveness of our approach and present the challenges for this task.
In this work, we demonstrate how existing classifiers for identifying toxic comments online fail to generalize to the diverse concerns of Internet users. We survey 17,280 participants to understand how user expectations for what constitutes toxic con tent differ across demographics, beliefs, and personal experiences. We find that groups historically at-risk of harassment - such as people who identify as LGBTQ+ or young adults - are more likely to to flag a random comment drawn from Reddit, Twitter, or 4chan as toxic, as are people who have personally experienced harassment in the past. Based on our findings, we show how current one-size-fits-all toxicity classification algorithms, like the Perspective API from Jigsaw, can improve in accuracy by 86% on average through personalized model tuning. Ultimately, we highlight current pitfalls and new design directions that can improve the equity and efficacy of toxic content classifiers for all users.
Graph comparison is a fundamental operation in data mining and information retrieval. Due to the combinatorial nature of graphs, it is hard to balance the expressiveness of the similarity measure and its scalability. Spectral analysis provides quinte ssential tools for studying the multi-scale structure of graphs and is a well-suited foundation for reasoning about differences between graphs. However, computing full spectrum of large graphs is computationally prohibitive; thus, spectral graph comparison methods often rely on rough approximation techniques with weak error guarantees. In this work, we propose SLaQ, an efficient and effective approximation technique for computing spectral distances between graphs with billions of nodes and edges. We derive the corresponding error bounds and demonstrate that accurate computation is possible in time linear in the number of graph edges. In a thorough experimental evaluation, we show that SLaQ outperforms existing methods, oftentimes by several orders of magnitude in approximation accuracy, and maintains comparable performance, allowing to compare million-scale graphs in a matter of minutes on a single machine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا