ترغب بنشر مسار تعليمي؟ اضغط هنا

Social Explorative Attention based Recommendation for Content Distribution Platforms

100   0   0.0 ( 0 )
 نشر من قبل Wenyi Xiao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In modern social media platforms, an effective content recommendation should benefit both creators to bring genuine benefits to them and consumers to help them get really interesting content. To address the limitations of existing methods for social recommendation, we propose Social Explorative Attention Network (SEAN), a social recommendation framework that uses a personalized content recommendation model to encourage personal interests driven recommendation. SEAN has t



قيم البحث

اقرأ أيضاً

117 - Zhepeng Li , Xiao Fang , Xue Bai 2015
Link recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networks. Salient examples of link recommendation include People You May Know on Facebook and LinkedIn as well as You May Know on Google+. The main stakeholders of an online social network include users (e.g., Facebook users) who use the network to socialize with other users and an operator (e.g., Facebook Inc.) that establishes and operates the network for its own benefit (e.g., revenue). Existing link recommendation methods recommend links that are likely to be established by users but overlook the benefit a recommended link could bring to an operator. To address this gap, we define the utility of recommending a link and formulate a new research problem - the utility-based link recommendation problem. We then propose a novel utility-based link recommendation method that recommends links based on the value, cost, and linkage likelihood of a link, in contrast to existing link recommendation methods which focus solely on linkage likelihood. Specifically, our method models the dependency relationship between value, cost, linkage likelihood and utility-based link recommendation decision using a Bayesian network, predicts the probability of recommending a link with the Bayesian network, and recommends links with the highest probabilities. Using data obtained from a major U.S. online social network, we demonstrate significant performance improvement achieved by our method compared to prevalent link recommendation methods from representative prior research.
With the growing amount of mobile social media, offline ephemeral social networks (OffESNs) are receiving more and more attentions. Offline ephemeral social networks (OffESNs) are the networks created ad-hoc at a specific location for a specific purp ose and lasting for short period of time, relying on mobile social media such as Radio Frequency Identification (RFID) and Bluetooth devices. The primary purpose of people in the OffESNs is to acquire and share information via attending prescheduled events. Event Recommendation over this kind of networks can facilitate attendees on selecting the prescheduled events and organizers on making resource planning. However, because of lack of users preference and rating information, as well as explicit social relations, both rating based traditional recommendation methods and social-trust based recommendation methods can no longer work well to recommend events in the OffESNs. To address the challenges such as how to derive users latent preferences and social relations and how to fuse the latent information in a unified model, we first construct two heterogeneous interaction social networks, an event participation network and a physical proximity network. Then, we use them to derive users latent preferences and latent networks on social relations, including like-minded peers, co-attendees and friends. Finally, we propose an LNF (Latent Networks Fusion) model under a pairwise factor graph to infer event attendance probabilities for recommendation. Experiments on an RFID-based real conference dataset have demonstrated the effectiveness of the proposed model compared with typical solutions.
74 - Fei Yu , Feiyi Fan , Shouxu Jiang 2019
Social activities play an important role in peoples daily life since they interact. For recommendations based on social activities, it is vital to have not only the activity information but also individuals social relations. Thanks to the geo-social networks and widespread use of location-aware mobile devices, massive geo-social data is now readily available for exploitation by the recommendation system. In this paper, a novel group recommendation method, called attentive geo-social group recommendation, is proposed to recommend the target user with both activity locations and a group of users that may join the activities. We present an attention mechanism to model the influence of the target user $u_T$ in candidate user groups that satisfy the social constraints. It helps to retrieve the optimal user group and activity topic candidates, as well as explains the group decision-making process. Once the user group and topics are retrieved, a novel efficient spatial query algorithm SPA-DF is employed to determine the activity location under the constraints of the given user group and activity topic candidates. The proposed method is evaluated in real-world datasets and the experimental results show that the proposed model significantly outperforms baseline methods.
Matching problems are ubiquitous. They occur in economic markets, labor markets, internet advertising, and elsewhere. In this paper we focus on an application of matching for social media. Our goal is to distribute content from information suppliers to information consumers. We seek to maximize the overall relevance of the matched content from suppliers to consumers while regulating the overall activity, e.g., ensuring that no consumer is overwhelmed with data and that all suppliers have chances to deliver their content. We propose two matching algorithms, GreedyMR and StackMR, geared for the MapReduce paradigm. Both algorithms have provable approximation guarantees, and in practice they produce high-quality solutions. While both algorithms scale extremely well, we can show that StackMR requires only a poly-logarithmic number of MapReduce steps, making it an attractive option for applications with very large datasets. We experimentally show the trade-offs between quality and efficiency of our solutions on two large datasets coming from real-world social-media web sites.
Social recommendation aims to fuse social links with user-item interactions to alleviate the cold-start problem for rating prediction. Recent developments of Graph Neural Networks (GNNs) motivate endeavors to design GNN-based social recommendation fr ameworks to aggregate both social and user-item interaction information simultaneously. However, most existing methods neglect the social inconsistency problem, which intuitively suggests that social links are not necessarily consistent with the rating prediction process. Social inconsistency can be observed from both context-level and relation-level. Therefore, we intend to empower the GNN model with the ability to tackle the social inconsistency problem. We propose to sample consistent neighbors by relating sampling probability with consistency scores between neighbors. Besides, we employ the relation attention mechanism to assign consistent relations with high importance factors for aggregation. Experiments on two real-world datasets verify the model effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا