ﻻ يوجد ملخص باللغة العربية
Steering a quantum harmonic oscillator state along cyclic trajectories leads to a path-dependent geometric phase. Here we describe an experiment observing this geometric phase in an electronic harmonic oscillator. We use a superconducting qubit as a non-linear probe of the phase, otherwise unobservable due to the linearity of the oscillator. Our results demonstrate that the geometric phase is, for a variety of cyclic trajectories, proportional to the area enclosed in the quadrature plane. At the transition to the non-adiabatic regime, we study corrections to the phase and dephasing of the qubit caused by qubit-resonator entanglement. The demonstrated controllability makes our system a versatile tool to study adiabatic and non-adiabatic geometric phases in open quantum systems and to investigate the potential of geometric gates for quantum information processing.
Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a n
In this work, we provide an answer to the question: how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)? To do this, we investigate the behavior of a HO, initially in its fundamental state, by making a frequency
Under certain conditions, the quantum delta-kicked harmonic oscillator displays quantum resonances. We consider an atom-optical realization of the delta-kicked harmonic oscillator, and present a theoretical discussion of the quantum resonances that c
We study the dissipative quantum harmonic oscillator with general non-thermal preparations of the harmonic oscillator bath. The focus is on equilibration of the oscillator in the long-time limit and the additional requirements for thermalization. Our
In this paper, we present a U(1)-invariant expansion theory of the adiabatic process. As its application, we propose and discuss new sufficient adiabatic approximation conditions. In the new conditions, we find a new invariant quantity referred as qu