ﻻ يوجد ملخص باللغة العربية
Starting from the Fisher matrix for counts in cells, I derive the full Fisher matrix for surveys of multiple tracers of large-scale structure. The key assumption is that the inverse of the covariance of the galaxy counts is given by the naive matrix inverse of the covariance in a mixed position-space and Fourier-space basis. I then compute the Fisher matrix for the power spectrum in bins of the three-dimensional wavenumber k; the Fisher matrix for functions of position x (or redshift z) such as the linear bias of the tracers and/or the growth function; and the cross-terms of the Fisher matrix that expresses the correlations between estimations of the power spectrum and estimations of the bias. When the bias and growth function are fully specified, and the Fourier-space bins are large enough that the covariance between them can be neglected, the Fisher matrix for the power spectrum reduces to the widely used result that was first derived by Feldman, Kaiser and Peacock (1994). Assuming isotropy, an exact calculation of the Fisher matrix can be performed in the case of a constant-density, volume-limited survey. I then show how the exact Fisher matrix in the general case can be obtained in terms of a series of volume-limited surveys.
Fisher forecasts are a common tool in cosmology with applications ranging from survey planning to the development of new cosmological probes. While frequently adopted, they are subject to numerical instabilities that need to be carefully investigated
In recent years forecasting activities have become a very important tool for designing and optimising large scale structure surveys. To predict the performance of such surveys, the Fisher matrix formalism is frequently used as a fast and easy way to
In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in t
We show how to obtain constraints on $beta=f/b$, the ratio of the matter growth rate and the bias that quantifies the linear redshift-space distortions, that are independent of the cosmological model, using multiple tracers of large-scale structure.