ﻻ يوجد ملخص باللغة العربية
We show how to obtain constraints on $beta=f/b$, the ratio of the matter growth rate and the bias that quantifies the linear redshift-space distortions, that are independent of the cosmological model, using multiple tracers of large-scale structure. For a single tracer the uncertainties on $beta$ are constrained by the uncertainties in the amplitude and shape of the power spectrum, which is limited by cosmic variance. However, for two or more tracers this limit does not apply, since taking the ratio of power spectra cosmic variance cancels out, and in the linear (Kaiser) approximation one measures directly the quantity $(1+ beta_1 mu^2)^2/(1+ beta_2 mu^2)^2$, where $mu$ is the angle of a given mode with the line of sight. We provide analytic formulae for the Fisher matrix for one and two tracers, and quantify the signal-to-noise ratio needed to make effective use of the multiple-tracer technique. We also forecast the errors on $beta$ for a survey like Euclid.
This paper aims to put constraints on the transition redshift $z_t$, which determines the onset of cosmic acceleration, in cosmological-model independent frameworks. In order to perform our analyses, we consider a flat universe and {assume} a paramet
In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially
The galaxy power spectrum is one of the central quantities in cosmology. It contains information about the primordial inflationary process, the matter clustering, the baryon-photon interaction, the effects of gravity, the galaxy-matter bias, the cosm
We use current measurements of the expansion rate $H(z)$ and cosmic background radiation bounds on the spatial curvature of the Universe to impose cosmological model-independent constraints on cosmic opacity. To perform our analyses, we compare opaci
The effective anisotropic stress or gravitational slip $eta=-Phi/Psi$ is a key variable in the characterisation of the physical origin of the dark energy, as it allows to test for a non-minimal coupling of the dark sector to gravity in the Jordan fra