ﻻ يوجد ملخص باللغة العربية
We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.1 Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE)1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 {mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayers steep resistive transition.
Transition Edge Sensors are ultra-sensitive superconducting detectors with applications in many areas of research, including astrophysics. The device consists of a superconducting thin film, often with additional normal metal features, held close to
In order to investigate the origin of the until now unaccounted excess noise and to minimize the uncontrollable phenomena at the transition in X-ray microcalorimeters we have developed superconducting transition-edge sensors into an edgeless geometry
With its first flight in 2018, Micro-X became the first program to fly Transition-Edge Sensors and their SQUID readouts in space. The science goal was a high-resolution, spatially resolved X-ray spectrum of the Cassiopeia A Supernova Remnant. While a
Materials with transition metals in triangular lattices are of great interest for their potential combination of exotic magnetism and electronic topology. Kagome nets, also known as trihexagonal, are of particular importance since the discovery of ge
We have studied the origin of excess noise in superconducting transition-edge sensors (TES) with several different detector designs. We show that most of the observed noise and complex impedance features can be explained by a thermal model consisting