ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/X-shooter observations of the low-metallicity blue compact dwarf galaxy PHL 293B including a luminous blue variable star

259   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. I. Izotov




اسأل ChatGPT حول البحث

(abridged) We present VLT/X-shooter spectroscopic observations in the wavelength range 3000-23000A of the extremely metal-deficient blue compact dwarf (BCD) galaxy PHL 293B containing a luminous blue variable (LBV) star. We determine abundances of N, O, Ne, S, Ar, and Fe and study the properties of the LBV from the fluxes and widths of broad emission lines. We derive an interstellar oxygen abundance of 12+log O/H = 7.71+/-0.02, which is in agreement with previous determinations. The observed fluxes of narrow Balmer, Paschen and Brackett hydrogen lines correspond to the theoretical recombination values after correction for extinction with a single value C(Hbeta) = 0.225. This implies that the star-forming region observed in the optical range is the only source of ionisation and there is no additional source of ionisation that is seen in the NIR range but is hidden in the optical range. For the LBV star in PHL 293B we find broad emission with P Cygni profiles in several Balmer hydrogen emission lines and for the first time in several Paschen hydrogen lines and in several HeI emission lines, implying temporal evolution of the LBV on a time scale of 8 years. The Halpha luminosity of the LBV star is by one order of magnitude higher than the one obtained for the LBV star in NGC 2363=Mrk 71 which has a slightly higher metallicity 12+logO/H = 7.87. The terminal velocity of the stellar wind in the low-metallicity LBV of PHL293B is high, ~800 km/s, and is comparable to that seen in spectra of some extragalactic LBVs during outbursts. We find that the averaged terminal velocities derived from the Paschen and HeI emission lines are by some ~40-60 km/s lower than those derived from the Balmer emission lines. This probably indicates the presence of the wind accelerating outward.



قيم البحث

اقرأ أيضاً

We present photometric and spectroscopic observations of two luminous blue variable (LBV) stars in two extremely metal-deficient blue compact dwarf (BCD) galaxies, DDO 68 with 12+logO/H = 7.15 and PHL 293B with 12+logO/H = 7.72. These two BCDs are th e lowest-metallicity galaxies where LBV stars have been detected, allowing to study the LBV phenomenon in the extremely low metallicity regime, and shedding light of the evolution of the first generation of massive stars born from primordial gas. We find that the strong outburst of the LBV star in DDO 68 occurred sometime between February 2007 and January 2008. We have compared the properties of the broad line emission in low-metallicity LBVs with those in higher metallicity LBVs. We find that, for the LBV star in DDO 68, broad emission with a P Cygni profile is seen in both H and He I emission lines. On the other hand, for the LBV star in PHL 293B, P Cygni profiles are detected only in H lines. For both LBVs, no heavy element emission line such as Fe II was detected. The Halpha luminosities of LBV stars in both galaxies are comparable to the one obtained for the LBV star in NGC 2363 (Mrk 71) which has a higher metallicity 12+logO/H = 7.89. On the other hand, the terminal velocities of the stellar winds in both low-metallicity LBVs are high, ~800 km/s, a factor of ~4 higher than the terminal velocities of the winds in high-metallicity LBVs. This suggests that stellar winds at low metallicity are driven by a different mechanism than the one operating in high-metallicity winds.
We report on small-amplitude optical variability and recent dissipation of the unusually persistent broad emission lines in the blue compact dwarf galaxy PHL 293B. The galaxys unusual spectral features (P Cygni-like profiles with $sim$800 km s$^{-1}$ blueshifted absorption lines) have resulted in conflicting interpretations of the nature of this source in the literature. However, analysis of new Gemini spectroscopy reveals the broad emission has begun to fade after being persistent for over a decade prior. Precise difference imaging light curves constructed with the Sloan Digital Sky Survey and the Dark Energy Survey reveal small-amplitude optical variability of $sim$0.1 mag in the g band offset by $100pm21$ pc from the brightest pixel of the host. The light curve is well-described by an active galactic nuclei (AGN)-like damped random walk process. However, we conclude that the origin of the optical variability and spectral features of PHL 293B is due to a long-lived stellar transient, likely a Type IIn supernova or non-terminal outburst, mimicking long-term AGN-like variability. This work highlights the challenges of discriminating between scenarios in such extreme environments, relevant to searches for AGNs in dwarf galaxies. This is the second long-lived transient discovered in a blue compact dwarf, after SDSS1133. Our result implies such long-lived stellar transients may be more common in metal-deficient galaxies. Systematic searches for low-level variability in dwarf galaxies will be possible with the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory.
(abridged) Strongly star-forming galaxies of subsolar metallicities are typical of the high-redshift universe. Here we therefore provide accurate data for two low-z analogs, the well-known low-metallicity emission-line galaxies Haro 11 and ESO 338-IG 004. On the basis of Very Large Telescope/X-shooter spectroscopic observations in the wavelength range 3000-24000AA, we use standard direct methods to derive physical conditions and element abundances. Furthermore, we use X-shooter data together with Spitzer observations in the mid-infrared range to attempt to find hidden star formation. We derive interstellar oxygen abundances of 12 + log O/H = 8.33+/-0.01, 8.10+/-0.04, and 7.89+/-0.01 in the two HII regions B and C of Haro 11 and in ESO 338-IG 004, respectively. The observed fluxes of the hydrogen lines correspond to the theoretical recombination values after correction for extinction with a single value of the extinction coefficient C(Hbeta) across the entire wavelength range from the near-ultraviolet to the NIR and mid-infrared for each of the studied HII regions. Therefore there are no emission-line regions contributing to the line emission in the NIR range, which are hidden in the optical range. The agreement between the extinction-corrected and CLOUDY-predicted fluxes implies that a HII region model including only stellar photoionisation is able to account for the observed fluxes, in both the optical and NIR ranges. All observed spectral energy distributions (SEDs) can be reproduced quite well across the whole wavelength range by model SEDs except for Haro 11B, where there is a continuum flux excess at wavelengths >1.6mum. It is possible that one or more red supergiant stars are responsible for the NIR flux excess in Haro 11B. We find evidence of a luminous blue variable (LBV) star in Haro 11C.
123 - Roger L. Griffith 2011
We report two new low metallicity blue compact dwarf galaxies (BCDs), WISEP J080103.93+264053.9 (hereafter W0801+26) and WISEP J170233.53+180306.4 (hereafter W1702+18), discovered using the Wide-field Infrared Survey Explorer (WISE). We identified th ese two BCDs from their extremely red colors at mid-infrared wavelengths, and obtained follow-up optical spectroscopy using the Low Resolution Imaging Spectrometer on Keck I. The mid-infrared properties of these two sources are similar to the well studied, extremely low metallicity galaxy SBS 0335-052E. We determine metallicities of 12 + log(O/H) = 7.75 and 7.63 for W0801+26 and W1702+18, respectively, placing them amongst a very small group of very metal deficient galaxies (Z < 1/10 Zsun). Their > 300 Angstrom Hbeta equivalent widths, similar to SBS 0335-052E, imply the existence of young (< 5 Myr) star forming regions. We measure star formation rates of 2.6 and 10.9 Msun/yr for W0801+26 and W1702+18, respectively. These BCDs, showing recent star formation activity in extremely low metallicity environments, provide new laboratories for studying star formation in extreme conditions and are low-redshift analogs of the first generation of galaxies to form in the universe. Using the all-sky WISE survey, we discuss a new method to identify similar star forming, low metallicity BCDs.
We investigate a suspected very massive star in one of the most metal-poor dwarf galaxies, PHL~293B. Excitingly, we find the sudden disappearance of the stellar signatures from our 2019 spectra, in particular the broad H lines with P~Cygni profiles t hat have been associated with a massive luminous blue variable (LBV) star. Such features are absent from our spectra obtained in 2019 with the ESPRESSO and X-shooter instruments of the ESOs VLT. We compute radiative transfer models using CMFGEN that fit the observed spectrum of the LBV and are consistent with ground-based and archival Hubble Space Telescope photometry. Our models show that during 2001--2011 the LBV had a luminosity $L_* = 2.5-3.5 times 10^6 ~L_{odot}$, a mass-loss rate $dot{M} = 0.005-0.020 ~M_{odot}$~yr$^{-1}$, a wind velocity of 1000~km~s$^{-1}$, and effective and stellar temperatures of $T_mathrm{eff} = 6000-6800$~K and $T_mathrm{*}=9500-15000$~K. These stellar properties indicate an eruptive state. We consider two main hypotheses for the absence of the broad emission components from the spectra obtained since 2011. One possibility is that we are seeing the end of an LBV eruption of a surviving star, with a mild drop in luminosity, a shift to hotter effective temperatures, and some dust obscuration. Alternatively, the LBV could have collapsed to a massive black hole without the production of a bright supernova.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا