ترغب بنشر مسار تعليمي؟ اضغط هنا

Luminous Blue Variable Stars In The Two Extremely Metal-Deficient Blue Compact Dwarf Galaxies DDO 68 and PHL 293B

124   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometric and spectroscopic observations of two luminous blue variable (LBV) stars in two extremely metal-deficient blue compact dwarf (BCD) galaxies, DDO 68 with 12+logO/H = 7.15 and PHL 293B with 12+logO/H = 7.72. These two BCDs are the lowest-metallicity galaxies where LBV stars have been detected, allowing to study the LBV phenomenon in the extremely low metallicity regime, and shedding light of the evolution of the first generation of massive stars born from primordial gas. We find that the strong outburst of the LBV star in DDO 68 occurred sometime between February 2007 and January 2008. We have compared the properties of the broad line emission in low-metallicity LBVs with those in higher metallicity LBVs. We find that, for the LBV star in DDO 68, broad emission with a P Cygni profile is seen in both H and He I emission lines. On the other hand, for the LBV star in PHL 293B, P Cygni profiles are detected only in H lines. For both LBVs, no heavy element emission line such as Fe II was detected. The Halpha luminosities of LBV stars in both galaxies are comparable to the one obtained for the LBV star in NGC 2363 (Mrk 71) which has a higher metallicity 12+logO/H = 7.89. On the other hand, the terminal velocities of the stellar winds in both low-metallicity LBVs are high, ~800 km/s, a factor of ~4 higher than the terminal velocities of the winds in high-metallicity LBVs. This suggests that stellar winds at low metallicity are driven by a different mechanism than the one operating in high-metallicity winds.



قيم البحث

اقرأ أيضاً

104 - T. X. Thuan 2016
We have obtained new HI observations with the 100m Green Bank Telescope (GBT) for a sample of 29 extremely metal-deficient star-forming Blue Compact Dwarf (BCD) galaxies, selected from the Sloan Digital Sky Survey spectral data base to be extremely m etal-deficient (12+logO/H<7.6). Neutral hydrogen was detected in 28 galaxies, a 97% detection rate. Combining the HI data with SDSS optical spectra for the BCD sample and adding complementary galaxy samples from the literature to extend the metallicity and mass ranges, we have studied how the HI content of a galaxy varies with various global galaxian properties. There is a clear trend of increasing gas mass fraction with decreasing metallicity, mass and luminosity. We obtain the relation M(HI)/L(g)~L(g)^{-0.3}, in agreement with previous studies based on samples with a smaller luminosity range. The median gas mass fraction f(gas) for the GBT sample is equal to 0.94 while the mean gas mass fraction is 0.90+/-0.15, with a lower limit of ~0.65. The HI depletion time is independent of metallicity, with a large scatter around the median value of 3.4 Gyr. The ratio of the baryonic mass to the dynamical mass of the metal-deficient BCDs varies from 0.05 to 0.80, with a median value of ~0.2. About 65% of the BCDs in our sample have an effective yield larger than the true yield, implying that the neutral gas envelope in BCDs is more metal-deficient by a factor of 1.5-20, as compared to the ionized gas.
302 - Y. I. Izotov 2011
(abridged) We present VLT/X-shooter spectroscopic observations in the wavelength range 3000-23000A of the extremely metal-deficient blue compact dwarf (BCD) galaxy PHL 293B containing a luminous blue variable (LBV) star. We determine abundances of N, O, Ne, S, Ar, and Fe and study the properties of the LBV from the fluxes and widths of broad emission lines. We derive an interstellar oxygen abundance of 12+log O/H = 7.71+/-0.02, which is in agreement with previous determinations. The observed fluxes of narrow Balmer, Paschen and Brackett hydrogen lines correspond to the theoretical recombination values after correction for extinction with a single value C(Hbeta) = 0.225. This implies that the star-forming region observed in the optical range is the only source of ionisation and there is no additional source of ionisation that is seen in the NIR range but is hidden in the optical range. For the LBV star in PHL 293B we find broad emission with P Cygni profiles in several Balmer hydrogen emission lines and for the first time in several Paschen hydrogen lines and in several HeI emission lines, implying temporal evolution of the LBV on a time scale of 8 years. The Halpha luminosity of the LBV star is by one order of magnitude higher than the one obtained for the LBV star in NGC 2363=Mrk 71 which has a slightly higher metallicity 12+logO/H = 7.87. The terminal velocity of the stellar wind in the low-metallicity LBV of PHL293B is high, ~800 km/s, and is comparable to that seen in spectra of some extragalactic LBVs during outbursts. We find that the averaged terminal velocities derived from the Paschen and HeI emission lines are by some ~40-60 km/s lower than those derived from the Balmer emission lines. This probably indicates the presence of the wind accelerating outward.
Primordial stars are expected to be very massive and hot, producing copious amounts of hard ionizing radiation. The best place to study hard ionizing radiation in the local universe is in very metal-deficient Blue Compact Dwarf (BCD) galaxies. We hav e carried out a MMT spectroscopic search for [Ne V] 3426 (ionization potential of 7.1 Ryd), [Fe V] 4227 (ionization potential of 4 Ryd) and He II 4686 (ionization potential of 4 Ryd) emission in a sample of 18 BCDs. We have added data from previous work and from the Data Release 3 of the Sloan Digital Sky Survey. In total, we have assembled a BCD high-ionization sample with [Ne V] emission in 4 galaxies, [Fe V] emission in 15 galaxies and He II emission in 465 galaxies. With this large sample, we have reached the following conclusions. There is a general trend of higher [Ne V], [Fe V] and He II emission at lower metallicities. However metallicity is not the only factor which controls the hardness of the radiation. High-mass X-ray binaries and main-sequence stars are probably excluded as the main sources of the very hard ionizing radiation responsible for [Ne V] emission. The most likely source of [Ne V] emission is probably fast radiative shocks moving with velocities > 450 km/s through a dense interstellar medium with an electron number density of several hundreds per cm^-3 and associated with supernova explosions of the most massive stars. These have masses of ~ 50 - 100 Msun and are formed in very compact super-star clusters. The softer ionizing radiation required for He II emission is likely associated with less massive evolved stars and/or radiative shocks moving through a less dense interstellar medium.
We report on small-amplitude optical variability and recent dissipation of the unusually persistent broad emission lines in the blue compact dwarf galaxy PHL 293B. The galaxys unusual spectral features (P Cygni-like profiles with $sim$800 km s$^{-1}$ blueshifted absorption lines) have resulted in conflicting interpretations of the nature of this source in the literature. However, analysis of new Gemini spectroscopy reveals the broad emission has begun to fade after being persistent for over a decade prior. Precise difference imaging light curves constructed with the Sloan Digital Sky Survey and the Dark Energy Survey reveal small-amplitude optical variability of $sim$0.1 mag in the g band offset by $100pm21$ pc from the brightest pixel of the host. The light curve is well-described by an active galactic nuclei (AGN)-like damped random walk process. However, we conclude that the origin of the optical variability and spectral features of PHL 293B is due to a long-lived stellar transient, likely a Type IIn supernova or non-terminal outburst, mimicking long-term AGN-like variability. This work highlights the challenges of discriminating between scenarios in such extreme environments, relevant to searches for AGNs in dwarf galaxies. This is the second long-lived transient discovered in a blue compact dwarf, after SDSS1133. Our result implies such long-lived stellar transients may be more common in metal-deficient galaxies. Systematic searches for low-level variability in dwarf galaxies will be possible with the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory.
The paper presents new results of the ongoing study of the unusual Lynx-Cancer void galaxy DDO 68 with record-low-metallicity regions (12+log(O/H) ~7.14) of the current star formation (SF). They include: a) a new spectrum and photometry with the 6-m SAO RAS telescope (BTA) for the Luminous Blue Variable (LBV = DDO68-V1). Photometric data sets are complemented with those based on the Sloan Digital Sky Survey (SDSS) and the Hubble Space Telescope (HST) archive images; b) the analysis of the DDO~68 supergiant shell (SGS) and the prominent smaller H-alpha arcs/shells visible at the HST image coupled with kinematics maps in H-alpha obtained with the Fabry-Perot interferometer (FPI) at the BTA; c) the list of identified at the HST images of about 50 most luminous stars (-9.1 < M_V < -6.0 mag) related to star-forming regions with the known extremely low O/H. This is intended to pave the path for the actual science with the next generation of giant telescopes. We confirm the earlier hints on significant variations of the LBV optical light deriving its amplitude of dV > 3.7~mag for the first time. New data suggest that in 2008--2010 the LBV reached M_V = --10.5 and probably underwent a giant eruption. We argue that the structure of star-forming complexes along the SGS (`Northern Ring) perimeter provides evidence for the sequential induced SF episodes caused by the shell gas instabilities and gravitational collapse. The variability of some DDO~68 luminous extremely metal-poor stars can be monitored with medium-size telescopes at sites with superb seeing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا