ﻻ يوجد ملخص باللغة العربية
The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition system (DAQ) now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped GSO crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.
A wide range of nucleon and nuclear structure experiments in Jefferson Labs Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cav
A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber a
The performances of the calorimeter of the Jlab Hall A Compton Polarimeter have been measured using the Mainz tagged photon beam.
This document describes the technical design concept of a compact high intensity, multi-GeV photon source. Capable of producing 10^12 equivalent photons per second this novel device will provide unprecedented access to physics processes with very sma
The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and exp