ﻻ يوجد ملخص باللغة العربية
We studied by angle-resolved photoelectron spectroscopy the strain-related structural transition from a pseudomorphic monolayer (ML) to a striped incommensurate phase in an Ag thin film grown on Pt(111). We exploited the surfactant properties of Bi to grow ordered Pt(111)-xMLAg-Bi trilayers with 0 < x < 5 ML, and monitored the dispersion of the Bi-derived interface states to probe the structure of the underlying Ag film. We find that their symmetry changes from threefold to sixfold and back to threefold in the Ag coverage range studied. Together with previous scanning tunneling microscopy and photoelectron diffraction data, these results provide a consistent microscopic description of the coverage-dependent structural transition.
The evolution of titanyl-phthalocyanine (TiOPc) thin films on Ag(111) has been investigated using IRAS, SPA-LEED and STM. In the (sub)monolayer regime various phases are observed that can be assigned to a 2D gas, a commensurate and a point-on-line ph
Size-selected silver clusters on Ag(111) were fabricated with the tip of a scanning tunneling microscope. Unoccupied electron resonances give rise to image contrast and spectral features which shift toward the Fermi level with increasing cluster size
We investigate the molecular acceptors 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA), 2,3,5,6-tetra uoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), and 4,5,9,10-pyrenetetraone (PYTON) on Ag(111) using densityfunctional theory. For two gr
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111)
Angle-resolved photoemission spectroscopy and Auger electron spectroscopy have been applied to study the intercalation process of silver underneath a monolayer of graphite (MG) on Ni(111). The room-temperature deposition of silver on top of MG/Ni(111