ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-Period Orbits in Billiards on the Surfaces of Constant Curvature

139   0   0.0 ( 0 )
 نشر من قبل Vadim Zharnitsky
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An approach due to Wojtkovski [9], based on the Jacobi fields, is applied to study sets of 3-period orbits in billiards on hyperbolic plane and on two-dimensional sphere. It is found that the set of 3-period orbits in billiards on hyperbolic plane, as in the planar case, has zero measure. For the sphere, a new proof of Baryshnikovs theorem is obtained which states that 3-period orbits can form a set of positive measure provided a natural condition on the orbit length is satisfied.



قيم البحث

اقرأ أيضاً

We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
We establish sufficient conditions for the hyperbolicity of the billiard dynamics on surfaces of constant curvature. This extends known results for planar billiards. Using these conditions, we construct large classes of billiard tables with positive Lyapunov exponents on the sphere and on the hyperbolic plane.
109 - Boris Gutkin 2000
We consider classical billiards on surfaces of constant curvature, where the charged billiard ball is exposed to a homogeneous, stationary magnetic field perpendicular to the surface. We establish sufficient conditions for hyperbolicity of the bill iard dynamics, and give lower estimation for the Lyapunov exponent. This extends our recent results for non-magnetic billiards on surfaces of constant curvature. Using these conditions, we construct large classes of magnetic billiard tables with positive Lyapunov exponents on the plane, on the sphere and on the hyperbolic plane.
172 - Xin Jin , Pengfei Zhang 2021
In this paper we study the Birkhoff Normal Form around elliptic periodic points for a variety of dynamical billiards. We give an explicit construction of the Birkhoff transformation and obtain explicit formulas for the first two twist coefficients in terms of the geometric parameters of the billiard table. As an application, we obtain characterizations of the nonlinear stability and local analytic integrability of the billiards around the elliptic periodic points.
146 - Sung-Hong Min , Keomkyo Seo 2021
Let $C$ be a strictly convex domain in a $3$-dimensional Riemannian manifold with sectional curvature bounded above by a constant and let $Sigma$ be a constant mean curvature surface with free boundary in $C$. We provide a pinching condition on the l ength of the traceless second fundamental form on $Sigma$ which guarantees that the surface is homeomorphic to either a disk or an annulus. Furthermore, under the same pinching condition, we prove that if $C$ is a geodesic ball of $3$-dimensional space forms, then $Sigma$ is either a spherical cap or a Delaunay surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا