ترغب بنشر مسار تعليمي؟ اضغط هنا

Free boundary constant mean curvature surfaces in a strictly convex three-manifold

147   0   0.0 ( 0 )
 نشر من قبل Keomkyo Seo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $C$ be a strictly convex domain in a $3$-dimensional Riemannian manifold with sectional curvature bounded above by a constant and let $Sigma$ be a constant mean curvature surface with free boundary in $C$. We provide a pinching condition on the length of the traceless second fundamental form on $Sigma$ which guarantees that the surface is homeomorphic to either a disk or an annulus. Furthermore, under the same pinching condition, we prove that if $C$ is a geodesic ball of $3$-dimensional space forms, then $Sigma$ is either a spherical cap or a Delaunay surface.



قيم البحث

اقرأ أيضاً

In this paper, we consider compact free boundary constant mean curvature surfaces immersed in a mean convex body of the Euclidean space or in the unit sphere. We prove that the Morse index is bounded from below by a linear function of the genus and number of boundary components.
We prove some Liouville type theorems on smooth compact Riemannian manifolds with nonnegative sectional curvature and strictly convex boundary. This gives a nonlinear generalization in low dimension of the recent sharp lower bound of the first Steklo v eigenvalue by Xia-Xiong and verifies partially a conjecture by the third author. As a consequence, we derive several sharp Sobolev trace inequalities on these manifolds.
101 - Xuezhang Chen , Nan Wu 2019
We first present a warped product manifold with boundary to show the non-uniqueness of the positive constant scalar curvature and positive constant boundary mean curvature equation. Next, we construct a smooth counterexample to show that the compactn ess of the set of lower energy solutions to the above equation fails when the dimension of the manifold is not less than $62$.
We state and prove a Chern-Osserman-type inequality in terms of the volume growth for complete surfaces with controlled mean curvature properly immersed in a Cartan-Hadamard manifold $N$ with sectional curvatures bounded from above by a negative quantity $K_{N}leq b<0$
The Han-Li conjecture states that: Let $(M,g_0)$ be an $n$-dimensional $(ngeq 3)$ smooth compact Riemannian manifold with boundary having positive (generalized) Yamabe constant and $c$ be any real number, then there exists a conformal metric of $g_0$ with scalar curvature $1$ and boundary mean curvature $c$. Combining with Z. C. Han and Y. Y. Lis results, we answer this conjecture affirmatively except for the case that $ngeq 8$, the boundary is umbilic, the Weyl tensor of $M$ vanishes on the boundary and has a non-zero interior point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا