ﻻ يوجد ملخص باللغة العربية
We analyze a phase-field system where the energy balance equation is linearly coupled with a nonlinear and nonlocal ODE for the order parameter $chi$. The latter equation is characterized by a space convolution term which models particle interaction and a singular configuration potential that forces $chi$ to take values in $(-1,1)$. We prove that the corresponding dynamical system has a bounded absorbing set in a suitable phase space. Then we establish the existence of a finite-dimensional global attractor.
We investigate the long term behavior in terms of global attractors, as time goes to infinity, of solutions to a continuum model for biological aggregations in which individuals experience long-range social attraction and short range dispersal. We co
The global attractor conjecture says that toric dynamical systems (i.e., a class of polynomial dynamical systems on the positive orthant) have a globally attracting point within each positive linear invariant subspace -- or, equivalently, complex bal
The main purpose of this paper is to study the global propagation of singularities of viscosity solution to discounted Hamilton-Jacobi equation begin{equation}label{eq:discount 1}tag{HJ$_lambda$} lambda v(x)+H( x, Dv(x) )=0 , quad xin mathbb{R}^n.
This paper is concerned with the globally exponential stability of traveling wave fronts for a class of population dynamics model with quiescent stage and delay. First, we establish the comparison principle of solutions for the population dynamics mo
The long-time asymptotics is analyzed for all finite energy solutions to a model $mathbf{U}(1)$-invariant nonlinear Dirac equation in one dimension, coupled to a nonlinear oscillator: {it each finite energy solution} converges as $ttopminfty$ to the