ﻻ يوجد ملخص باللغة العربية
We consider Seiberg electric-magnetic dualities for 4d $mathcal{N}=1$ SYM theories with SO(N) gauge group. For all such known theories we construct superconformal indices (SCIs) in terms of elliptic hypergeometric integrals. Equalities of these indices for dual theories lead both to proven earlier special function identities and new conjectural relations for integrals. In particular, we describe a number of new elliptic beta integrals associated with the s-confining theories with the spinor matter fields. Reductions of some dualities from SP(2N) to SO(2N) or SO(2N+1) gauge groups are described. Interrelation of SCIs and the Witten anomaly is briefly discussed. Possible applications of the elliptic hypergeometric integrals to a two-parameter deformation of 2d conformal field theory and related matrix models are indicated. Connections of the reduced SCIs with the state integrals of the knot theory, generalized AGT duality for (3+3)d theories, and a 2d vortex partition function are described.
Using the superconformal (SC) indices techniques, we construct Seiberg type dualities for $mathcal{N}=1$ supersymmetric field theories outside the conformal windows. These theories are physically distinguished by the presence of chiral superfields with small or negative $R$-charges.
In arXiv:1906.11820 and arXiv:1907.05404 we proposed an approach based on graphs to characterize 5d superconformal field theories (SCFTs), which arise as compactifications of 6d $mathcal{N}= (1,0)$ SCFTs. The graphs, so-called combined fiber diagrams
We construct two-dimensional N=(2,2) supersymmetric gauge theories with orthogonal and symplectic groups using branes and orientifold planes in Type IIA string theory. A number of puzzles regarding the construction, including the effect of exchanging
We study vortex solutions in a holographic model of Herzog, Hartnoll, and Horowitz, with a vanishing external magnetic field on the boundary, as is appropriate for vortices in a superfluid. We study relevant length scales related to the vortices and
We use the superspace formulation of supergravity in eleven and ten dimensions to compute fermion couplings on the M2-brane and on D$p$-branes. In this formulation fermionic couplings arise naturally from the $theta$-expansion of the superfields from