ﻻ يوجد ملخص باللغة العربية
We study vortex solutions in a holographic model of Herzog, Hartnoll, and Horowitz, with a vanishing external magnetic field on the boundary, as is appropriate for vortices in a superfluid. We study relevant length scales related to the vortices and how the charge density inside the core of the vortex behaves as a function of temperature or chemical potential. We extract the critical superfluid velocity from the vortex solutions, study how it behaves as a function of the temperature, and compare it to earlier studies and to the Landau criterion. We also comment on the possibility of a Berezinskii-Kosterlitz-Thouless vortex confinement-deconfinement transition.
We study dissipation in holographic superfluids at finite temperature and zero chemical potential. The zero overlap with the heat current allows us to isolate the physics of the conserved current corresponding to the broken global $U(1)$. By using an
We revisit the question of stability of holographic superfluids with finite superfluid velocity. Our method is based on applying the Landau criterion to the Quasinormal Mode (QNM) spectrum. In particular we study the QNMs related to the Goldstone mod
We include vortices in the superfluid EFT for four dimensional CFTs at large global charge. Using the state-operator correspondence, vortices are mapped to charged operators with large spin and we compute their scaling dimensions. Different regimes a
We explore the far from equilibrium response of a holographic superfluid using the AdS/CFT correspondence. We establish the dynamical phase diagram corresponding to quantum quenches of the order parameter source field. We find three distinct regimes
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one band superfluid phases, the coexistent superfluid phase has also been found in the AdS soliton background