ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems

139   0   0.0 ( 0 )
 نشر من قبل Vicente Botella-Soler
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the dynamics of a simple adaptive network. The network architecture evolves to a number of disconnected components on which the dynamics is characterized by the possibility of differently synchronized nodes within the same network (polysynchronous states). These systems may have implications for the evolutionary emergence of polysynchrony and hierarchical networks in physical or biological systems modeled by adaptive networks.



قيم البحث

اقرأ أيضاً

We analyse a collection of empirical networks in a wide spectrum of disciplines and show that strong non-normality is ubiquitous in network science. Dynamical processes evolving on non-normal networks exhibit a peculiar behaviour, as initial small di sturbances may undergo a transient phase and be strongly amplified in linearly stable systems. Additionally, eigenvalues may become extremely sensible to noise, and have a diminished physical meaning. We identify structural properties of networks that are associated to non-normality and propose simple models to generate networks with a tuneable level of non-normality. We also show the potential use of a variety of metrics capturing different aspects of non-normality, and propose their potential use in the context of the stability of complex ecosystems.
Neuromorphic networks can be described in terms of coarse-grained variables, where emergent sustained behaviours spontaneously arise if stochasticity is properly taken in account. For example it has been recently found that a directed linear chain of connected patch of neurons amplifies an input signal, also tuning its characteristic frequency. Here we study a generalization of such a simple model, introducing heterogeneity and variability in the parameter space and long-range interactions, breaking, in turn, the preferential direction of information transmission of a directed chain. On one hand, enlarging the region of parameters leads to a more complex state space that we analytically characterise; moreover, we explicitly link the strength distribution of the non-local interactions with the frequency distribution of the network oscillations. On the other hand, we found that adding long-range interactions can cause the onset of novel phenomena, as coherent and synchronous oscillations among all the interacting units, which can also coexist with the amplification of the signal.
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent `catalytic and `inhibitory interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set (ACS), appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the ACS enlarges and percolates through the network in a short, analytically determined time scale. This self-organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long time scales triggered by the chance elimination of `keystone species, followed by recoveries.
159 - C. Gros 2012
An thorough introduction is given at an introductory level to the field of quantitative complex system science, with special emphasis on emergence in dynamical systems based on network topologies. Subjects treated include graph theory and small-world networks, a generic introduction to the concepts of dynamical system theory, random Boolean networks, cellular automata and self-organized criticality, the statistical modeling of Darwinian evolution, synchronization phenomena and an introduction to the theory of cognitive systems. It inludes chapter on Graph Theory and Small-World Networks, Chaos, Bifurcations and Diffusion, Complexity and Information Theory, Random Boolean Networks, Cellular Automata and Self-Organized Criticality, Darwinian evolution, Hypercycles and Game Theory, Synchronization Phenomena and Elements of Cognitive System Theory.
Population bursts in a large ensemble of coupled elements result from the interplay between the local excitable properties of the nodes and the global network topology. Here collective excitability and self-sustained bursting oscillations are shown t o spontaneously emerge in adaptive networks of globally coupled non-excitable units. The ingredients to observe collective excitability are the coexistence of states with different degree of synchronizaton joined to a global feedback acting, on a slow timescale, against the synchronization (desynchronization) of the oscillators. These regimes are illustrated for two paradigmatic classes of coupled rotators: namely, the Kuramoto model with and without inertia. For the bimodal Kuramoto model we analytically show that the macroscopic evolution originates from the existence of a critical manifold organizing the fast collective dynamics on a slow timescale. Our results provide evidence that adaptation can induce excitability by maintaining a network permanently out-of-equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا