ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent excitability in adaptive networks of non-excitable units

93   0   0.0 ( 0 )
 نشر من قبل Simona Olmi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Population bursts in a large ensemble of coupled elements result from the interplay between the local excitable properties of the nodes and the global network topology. Here collective excitability and self-sustained bursting oscillations are shown to spontaneously emerge in adaptive networks of globally coupled non-excitable units. The ingredients to observe collective excitability are the coexistence of states with different degree of synchronizaton joined to a global feedback acting, on a slow timescale, against the synchronization (desynchronization) of the oscillators. These regimes are illustrated for two paradigmatic classes of coupled rotators: namely, the Kuramoto model with and without inertia. For the bimodal Kuramoto model we analytically show that the macroscopic evolution originates from the existence of a critical manifold organizing the fast collective dynamics on a slow timescale. Our results provide evidence that adaptation can induce excitability by maintaining a network permanently out-of-equilibrium.



قيم البحث

اقرأ أيضاً

We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.
A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior---which we term asymmetry-induced synchronization (AISync)---occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.
Complex chemical reaction networks, which underlie many industrial and biological processes, often exhibit non-monotonic changes in chemical species concentrations, typically described using nonlinear models. Such non-monotonic dynamics are in princi ple possible even in linear models if the matrices defining the models are non-normal, as characterized by a necessarily non-orthogonal set of eigenvectors. However, the extent to which non-normality is responsible for non-monotonic behavior remains an open question. Here, using a master equation to model the reaction dynamics, we derive a general condition for observing non-monotonic dynamics of individual species, establishing that non-normality promotes non-monotonicity but is not a requirement for it. In contrast, we show that non-normality is a requirement for non-monotonic dynamics to be observed in the Renyi entropy. Using hydrogen combustion as an example application, we demonstrate that non-monotonic dynamics under experimental conditions are supported by a linear chain of connected components, in contrast with the dominance of a single giant component observed in typical random reaction networks. The exact linearity of the master equation enables development of rigorous theory and simulations for dynamical networks of unprecedented size (approaching $10^5$ dynamical variables, even for a network of only 20 reactions and involving less than 100 atoms). Our conclusions are expected to hold for other combustion processes, and the general theory we develop is applicable to all chemical reaction networks, including biological ones.
155 - Renquan Zhang , Sen Pei 2017
We study the strategy to optimally maximize the dynamic range of excitable networks by removing the minimal number of links. A network of excitable elements can distinguish a broad range of stimulus intensities and has its dynamic range maximized at criticality. In this study, we formulate the activation propagation in excitable networks as a message passing process in which the critical state is reached when the largest eigenvalue of the weighted non-backtracking (WNB) matrix is exactly one. By considering the impact of single link removal on the largest eigenvalue, we develop an efficient algorithm that aims to identify the optimal set of links whose removal will drive the system to the critical state. Comparisons with other competing heuristics on both synthetic and real-world networks indicate that the proposed method can maximize the dynamic range by removing the smallest number of links, and at the same time maintain the largest size of the giant connected component.
We study the statistical physics of a surprising phenomenon arising in large networks of excitable elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and large-noise solutions show asynchronous ac tivity, the network displays orderly, perfectly synchronized periodic responses at intermediate level of noise. We show that this phenomenon is fundamentally stochastic and collective in nature. Indeed, for noise and coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited regime progressively builds up, leading to an increase in the fraction of excited neurons eventually triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We further uncover a novel anti-resonance phenomenon: noise-induced synchronized oscillations disappear when the system is driven by periodic stimulation with frequency within a specific range. In that anti-resonance regime, the system is optimal for measures of information capacity. This observation provides a new hypothesis accounting for the efficiency of Deep Brain Stimulation therapies in Parkinsons disease, a neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We further discuss the universality of these phenomena in the class of stochastic networks of excitable elements with confining coupling, and illustrate this universality by analyzing various classical models of neuronal networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact of noise in excitable systems, reveal a novel anti-resonance phenomenon in these systems, and propose a new hypothesis for the efficiency of high-frequency stimulation in Parkinsons disease.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا