ترغب بنشر مسار تعليمي؟ اضغط هنا

Memory in the Photon Statistics of Multilevel Quantum Systems

93   0   0.0 ( 0 )
 نشر من قبل Felipe Caycedo-Soler PhD
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistics of photons emitted by single multilevel systems is investigated with emphasis on the nonrenewal characteristics of the photon-arrival times. We consider the correlation between consecutive interphoton times and present closed form expressions for the corresponding multiple moment analysis. Based on the moments a memory measure is proposed which provides an easy way of gaging the non-renewal statistics. Monte-Carlo simulations demonstrate that the experimental verification of non-renewal statistics is feasible.



قيم البحث

اقرأ أيضاً

The photon blockade (PB) effect in emitter-cavity systems depends on the anharmonicity of the ladder of dressed energy eigenstates. The recent developments in color center photonics are leading toward experimental demonstrations of multi-emitter-cavi ty solid-state systems with an expanded set of energy levels compared to the traditionally studied single-emitter systems. We focus on the case of N = 2 nonidentical quasi-atoms strongly coupled to a nanocavity in the bad cavity regime (with parameters within reach of the color center systems), and discover three PB mechanisms: polaritonic, subradiant and unconventional. The polaritonic PB, which is the conventional mechanism studied in single-emitter-cavity systems, also occurs at the polariton frequencies in multi-emitter systems. The subradiant PB is a new interference effect owing to the inhomogeneous broadening of the emitters which results in a purer and a more robust single photon emission than the polaritonic PB. The unconventional PB in the modeled system corresponds to the suppression of the single- and two-photon correlation statistics and the enhancement of the three-photon correlation statistic. Using the effective Hamiltonian approach, we unravel the origin and the time-domain evolution of these phenomena.
We experimentally and theoretically investigate injection locking of quantum dot (QD) microlasers in the regime of cavity quantum electrodynamics (cQED). We observe frequency locking and phase-locking where cavity enhanced spontaneous emission enable s simultaneous stable oscillation at the master frequency and at the solitary frequency of the slave microlaser. Measurements of the second-order autocorrelation function prove this simultaneous presence of both master and slave-like emission, where the former has coherent character with $g^{(2)}(0)=1$ while the latter one has thermal character with $g^{(2)}(0)=2$. Semi-classical rate-equations explain this peculiar behavior by cavity enhanced spontaneous emission and a low number of photons in the laser mode.
We analyse dynamical large deviations of quantum trajectories in Markovian open quantum systems in their full generality. We derive a {em quantum level-2.5 large deviation principle} for these systems, which describes the joint fluctuations of time-a veraged quantum jump rates and of the time-averaged quantum state for long times. Like its level-2.5 counterpart for classical continuous-time Markov chains (which it contains as a special case) this description is both {em explicit and complete}, as the statistics of arbitrary time-extensive dynamical observables can be obtained by contraction from the explicit level-2.5 rate functional we derive. Our approach uses an unravelled representation of the quantum dynamics which allows these statistics to be obtained by analysing a classical stochastic process in the space of pure states. For quantum reset processes we show that the unravelled dynamics is semi-Markov, and derive bounds on the asymptotic variance of the number of quantum jumps which generalise classical thermodynamic uncertainty relations. We finish by discussing how our level-2.5 approach can be used to study large deviations of non-linear functions of the state such as measures of entanglement.
Light shaping facilitates the preparation and detection of optical states and underlies many applications in communications, computing, and imaging. In this Letter, we generalize light shaping to the quantum domain. We show that patterns of phase mod ulation for classical laser light can also shape higher orders of spatial coherence, allowing deterministic tailoring of high-dimensional quantum entanglement. By modulating spatially entangled photon pairs, we create periodic, topological, and random patterns of quantum illumination, without effect on intensity. We then structure the quantum illumination to simultaneously compensate for entanglement that has been randomized by a scattering medium and to characterize the mediums properties via a quantum measurement of the optical memory effect. The results demonstrate fundamental aspects of spatial coherence and open the field of adaptive quantum optics.
141 - Miaodi Guo 2021
We analyze a scheme for controlling coherent photon absorption by cavity electromagnetically induced transparency (EIT) in a three-level atom-cavity system. Coherent perfect absorption (CPA) can occur when time-reversed symmetry of lasing process is obtained and destructive interference happens at the cavity interfaces. Generally, the frequency range of CPA is dependent on the decay rates of cavity mirrors. When the control laser is settled, the smaller cavity decay rate causes the wider frequency range of CPA, and the input intensity is larger to satisfy CPA condition for a given frequency. While the cavity parameters are determined, Rabi frequency of the control laser has little effect on the frequency range of CPA. However, with EIT-type quantum interference, the CPA mode is tunable by the control laser. This means the CPA with given frequency and intensity of an input laser can be manipulated as the coherent non-perfect absorption (CNPA). Moreover, with the relative phase of input probe lasers, the probe fields can be perfectly transmitted and/or reflected. Therefore, the system can be used as a controllable coherent perfect absorber or transmitter and/or reflector, and our work may have practical applications in optical logic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا