ﻻ يوجد ملخص باللغة العربية
Light shaping facilitates the preparation and detection of optical states and underlies many applications in communications, computing, and imaging. In this Letter, we generalize light shaping to the quantum domain. We show that patterns of phase modulation for classical laser light can also shape higher orders of spatial coherence, allowing deterministic tailoring of high-dimensional quantum entanglement. By modulating spatially entangled photon pairs, we create periodic, topological, and random patterns of quantum illumination, without effect on intensity. We then structure the quantum illumination to simultaneously compensate for entanglement that has been randomized by a scattering medium and to characterize the mediums properties via a quantum measurement of the optical memory effect. The results demonstrate fundamental aspects of spatial coherence and open the field of adaptive quantum optics.
Pixelation occurs in many imaging systems and limits the spatial resolution of the acquired images. This effect is notably present in quantum imaging experiments with photon pairs, in which the number of pixels used to detect coincidences is often li
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum t
Spectrally correlated photon pairs can be used to improve performance of long range fiber based quantum communication protocols. We present a source based on spontaneous parametric down-conversion producing polarization entangled photons without spec
Sources of quantum light, in particular correlated photon pairs that are indistinguishable in all degrees of freedom, are the fundamental resource that enables continuous-variable quantum computation and paradigms such as Gaussian boson sampling. Nan
We propose and theoretically analyze a new scheme for generating hyper-entangled photon pairs in a system of polaritons in coupled planar microcavities. Starting from a microscopic model, we evaluate the relevant parametric scattering processes and n