ﻻ يوجد ملخص باللغة العربية
We obtained 13 epochs of mid-infrared interferometry with the MIDI instrument at the VLTI between April 2004 and July 2007, covering pulsation phases 0.45-0.85 within four cycles. The data are modeled with a radiative transfer model of the dust shell where the central stellar intensity profile is described by a series of dust-free dynamic model atmospheres based on self-excited pulsation models. We examined two dust species, silicate and Al2O3 grains. We performed model simulations using variations in model phase and dust shell parameters to investigate the expected variability of our photometric and interferometric data. The observed visibility spectra do not show any indication of variations as a function of pulsation phase and cycle. The observed photometry spectra may indicate intracycle and cycle-to-cycle variations at the level of 1-2 standard deviations. The best-fitting model for our average pulsation phase of 0.64+/-0.15 includes the dynamic model atmosphere M21n (T_model=2550 K) with a photospheric angular diameter of 7.6+/-0.6 mas, and a silicate dust shell with an optical depth of 2.8+/-0.8, an inner radius of 4.1+/-0.7 R_Phot, and a power-law index of the density distribution of 2.6+/-0.3. The addition of an Al2O3 dust shell did not improve the model fit. The photospheric angular diameter corresponds to a radius of 520^+230_-140 R_sun and an effective temperature of ~ 2420+/-200 K. Our modeling simulations confirm that significant visibility variations are not expected for RR Aql at mid-infrared wavelengths within our uncertainties. We conclude that our RR Aql data can be described by a pulsating atmosphere surrounded by a silicate dust shell. The effects of the pulsation on the mid-infrared flux and visibility values are expected to be less than about 25% and 20%, respectively, and are too low to be detected within our measurement uncertainties.
We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength ba
We have used near- and mid-infrared interferometry to investigate the pulsating atmosphere and the circumstellar environment of the Mira variable RR Aql. Observations were taken with the VLTI/AMBER (near infrared) and the VLTI/MIDI (mid infrared) ins
We present the first multi-epoch study that includes concurrent mid-infrared and radio interferometry of an oxygen-rich Mira star. We obtained mid-infrared interferometry of S Ori with VLTI/MIDI at four epochs between December 2004 and December 2005.
We analysed 30 RR Lyrae stars (RRLs) located in the Large Magellanic Cloud (LMC) globular cluster Reticulum that were observed in the 3.6 and 4.5 $mu$m passbands with the Infrared Array Camera (IRAC) on board of the Spitzer Space Telescope. We derive
We combine variability information from the MAssive Compact Halo Objects (MACHO) survey of the Large Magellanic Cloud (LMC) with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxys Evolution (SAGE) survey to create