ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-Infrared interferometry of dust around massive evolved stars

112   0   0.0 ( 0 )
 نشر من قبل Jayadev Rajagopal
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength band. We also present diffraction-limited observations at 10.7 micron on the Keck Telescope with baselines up to 8.7 m which explore larger scale structure. We have resolved the dust shells around the late type WC stars WR 106 and WR 95, and the enigmatic NaSt1 (formerly WR 122), suspected to have recently evolved from a Luminous Blue Variable (LBV) stage. For AG Car, the protoypical LBV in our sample, we marginally resolve structure close to the star, distinct from the well-studied detached nebula. The dust shells around the two WC stars show fairly constant size in the 8-13 micron MIDI band, with gaussian half-widths of ~ 25 to 40 mas. The compact dust we detect around NaSt1 and AG Car favors recent or ongoing dust formation. Using the measured visibilities, we build spherically symmetric radiative transfer models of the WC dust shells which enable detailed comparison with existing SED-based models. Our results indicate that the inner radii of the shells are within a few tens of AU from the stars. In addition, our models favor grain size distributions with large (~ 1 micron) dust grains. This proximity of the inner dust to the hot central star emphasizes the difficulty faced by current theories in forming dust in the hostile environment around WR stars. Although we detect no direct evidence for binarity for these objects, dust production in a colliding-wind interface in a binary system is a feasible mechanism in WR systems under these conditions.



قيم البحث

اقرأ أيضاً

172 - M. Jura , C. H. Chen , E. Furlan 2004
We report spectra obtained with the Spitzer Space Telescope in the wavelength range between 14 microns and 35 microns of 19 nearby main-sequence stars with infrared excesses. The six stars with strong dust emission show no recognizable spectral featu res, suggesting that the bulk of the emitting particles have diameters larger than 10 microns. If the observed dust results from collisional grinding of larger solids, we infer minimum masses of the parent body population between 0.004 of the Earths mass and 0.06 of the Earths mass. We estimate grain production rates of 10 Gg/s around lambda Boo and HR 1570; selective accretion of this matter may help explain their peculiar surface abundances. There appear to be inner truncations in the dust clouds at 48 AU, 11 AU, 52 AU and 54 AU around HR 333, HR 506, HR 1082 and HR 3927, respectively.
We obtained 13 epochs of mid-infrared interferometry with the MIDI instrument at the VLTI between April 2004 and July 2007, covering pulsation phases 0.45-0.85 within four cycles. The data are modeled with a radiative transfer model of the dust shell where the central stellar intensity profile is described by a series of dust-free dynamic model atmospheres based on self-excited pulsation models. We examined two dust species, silicate and Al2O3 grains. We performed model simulations using variations in model phase and dust shell parameters to investigate the expected variability of our photometric and interferometric data. The observed visibility spectra do not show any indication of variations as a function of pulsation phase and cycle. The observed photometry spectra may indicate intracycle and cycle-to-cycle variations at the level of 1-2 standard deviations. The best-fitting model for our average pulsation phase of 0.64+/-0.15 includes the dynamic model atmosphere M21n (T_model=2550 K) with a photospheric angular diameter of 7.6+/-0.6 mas, and a silicate dust shell with an optical depth of 2.8+/-0.8, an inner radius of 4.1+/-0.7 R_Phot, and a power-law index of the density distribution of 2.6+/-0.3. The addition of an Al2O3 dust shell did not improve the model fit. The photospheric angular diameter corresponds to a radius of 520^+230_-140 R_sun and an effective temperature of ~ 2420+/-200 K. Our modeling simulations confirm that significant visibility variations are not expected for RR Aql at mid-infrared wavelengths within our uncertainties. We conclude that our RR Aql data can be described by a pulsating atmosphere surrounded by a silicate dust shell. The effects of the pulsation on the mid-infrared flux and visibility values are expected to be less than about 25% and 20%, respectively, and are too low to be detected within our measurement uncertainties.
138 - H. Linz , B. Stecklum , R. Follert 2008
The very inner structure of massive young stellar objects (YSOs) is difficult to trace. With conventional observational methods we identify structures still several hundreds of AU in size. However, the (proto-)stellar growth takes place at the innerm ost regions (<100 AU) where the actual mass transfer onto the forming high-mass star occurs. We present results from our programme toward massive YSOs at the VLTI, utilising the two-element interferometer MIDI. To date, we observed 10 well-known massive YSOs down to scales of 20 mas (typically corresponding to 20 - 40 AU for our targets) in the 8-13 micron region. We clearly resolve these objects which results in low visibilities and sizes in the order of 30-50 mas. For two objects, we show results of our modelling. We demonstrate that the MIDI data can reveal decisive structure information for massive YSOs. They are often pivotal in order to resolve ambiguities still immanent in model parameters derived from sole SED fitting.
80 - F.J. Molster 2002
This is the first paper in a series of three where we present the first comprehensive inventory of solid state emission bands observed in a sample of 17 oxygen-rich circumstellar dust shells surrounding evolved stars. The data were taken with the Sho rt and Long Wavelength Spectrographs on board of the Infrared Space Observatory (ISO) and cover the 2.4 to 195 micron wavelength range. The spectra show the presence of broad 10 and 18 micron bands that can be attributed to amorphous silicates. In addition, at least 49 narrow bands are found whose position and width indicate they can be attributed to crystalline silicates. Almost all of these bands were not known before ISO. We have measured the peak positions, widths and strengths of the individual, continuum subtracted bands. Based on these measurements, we were able to order the spectra in sequence of decreasing crystalline silicate band strength. We found that the strength of the emission bands correlates with the geometry of the circumstellar shell, as derived from direct imaging or inferred from the shape of the spectral energy distribution. This naturally divides the sample into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). All stars with the 33.6 micron forsterite band stronger than 20 percent over continuum are disk sources. We define spectral regions (called complexes) where a concentration of emission bands is evident, at 10, 18, 23, 28, 33, 40 and 60 micron. We derive average shapes for these complexes and compare these to the individual band shapes of the programme stars.
The U. C. Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC+10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time-variable, and these n ew data are used to probe the evolution of the dust shells on a decade time-scale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically-symmetric models at maximum and minimum light both show the inner radius of the IRC+10216 dust shell to be much larger (150 mas) than that expected from the dust condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-IR imaging which indicates little or no new dust production in the last three years (Tuthill et al 2000). Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time-variable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا