ﻻ يوجد ملخص باللغة العربية
We consider noninteracting fermions on the honeycomb lattice in the presence of a magnetic vortex superlattice. It is shown that depending on the superlattice periodicity, a gap may open at zero energy. We derive an expression of the gap in the small-flux limit but the main qualitative features are found to be valid for arbitrary fluxes. This study provides an original example of a metal-insulator transition induced by a strongly modulated magnetic field in graphene. At the same time our results directly apply to Kitaevs honeycomb model in a vortex superlattice.
New Dirac points appear when periodic potentials are applied to graphene, and there are many interesting effects near these new Dirac points. Here we investigate the $textit{Zitterbewegung}$ effect of fermions described by a Gaussian wave packet in g
Weyl points, synthetic magnetic monopoles in the 3D momentum space, are the key features of topological Weyl semimetals. The observation of Weyl points in ultracold atomic gases usually relies on the realization of high-dimensional spin-orbit couplin
We present an extensive quantum Monte Carlo study of the Neel-valence bond solid (VBS) phase transition on rectangular and honeycomb lattice SU($N$) antiferromagnets in sign problem free models. We find that in contrast to the honeycomb lattice and p
The sign problem (SP) is the fundamental limitation to simulations of strongly correlated materials in condensed matter physics, solving quantum chromodynamics at finite baryon density, and computational studies of nuclear matter. As a result, it is
We theoretically investigate the emergence of non-hermitian physics at the heterojunction of a type-II Dirac semi-metal (DSM) and a dirty superconductor (DSC). The non-hermiticity is introduced in the DSM through the self-energy term incorporated via