ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical investigation of the evolution of the topological phase of Bi$_{2}$Se$_{3}$ under mechanical strain

306   0   0.0 ( 0 )
 نشر من قبل Steve Young
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi$_2$Se$_3$, this inversion occurs at the $Gamma$ point. For bulk Bi$_2$Se$_3$, we have analyzed the effect of arbitrary strain on the $Gamma$ point band gap using Density Functional Theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi$_2$Te$_3$ supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution.



قيم البحث

اقرأ أيضاً

Crystalline symmetries have played a central role in the identification of topological materials. The use of symmetry indicators and band representations have enabled a classification scheme for crystalline topological materials, leading to large sca le topological materials discovery. In this work we address whether amorphous topological materials, which lie beyond this classification due to the lack of long-range structural order, exist in the solid state. We study amorphous Bi$_2$Se$_3$ thin films, which show a metallic behavior and an increased bulk resistance. The observed low field magnetoresistance due to weak antilocalization demonstrates a significant number of two dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data is consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture resembling that of the surface state of crystalline Bi$_2$Se$_3$. These experimental results are consistent with theoretical photoemission spectra obtained with an amorphous tight-binding model that utilizes a realistic amorphous structure. This discovery of amorphous materials with topological properties uncovers an overlooked subset of topological matter outside the current classification scheme, enabling a new route to discover materials that can enhance the development of scalable topological devices.
We present computer simulations of liquid and solid phases of condensed methane at pressures below 25 GPa, between 150 and 300 K, where no appreciable molecular dissociation occurs. We used molecular dynamics (MD) and metadynamics techniques, and emp irical potentials in the rigid molecule approximation, whose validity was confirmed a posteriori by carrying out it ab initio MD simulations for selected pressure and temperature conditions. Our results for the melting line are in satisfactory agreement with existing measurements. We find that the fcc crystal transforms into a hcp structure with 4 molecules per unit cell (B phase) at about 10 GPa and 150 K, and that the B phase transforms into a monoclinic high pressure phase above 20 GPa. Our results for solid/solid phase transitions are consistent with those of Raman studies but the phase boundaries estimated in our calculations are at higher pressure than those inferred from spectroscopic data.
We report $beta$-detected nuclear magnetic resonance ($beta$-NMR) measurements in Bi$_{2}$Se$_{3}$:Ca (BSC) and Bi$_{2}$Te$_{3}$:Mn (BTM) single crystals using $^{8}$Li$^{+}$ implanted to depths on the order of 100 nm. Above $sim 200$ K, spin-lattice relaxation (SLR) reveals diffusion of $^{8}$Li$^{+}$, with activation energies of $sim 0.4$ eV ($sim 0.2$ eV) in BSC (BTM). At lower temperatures, the nuclear magnetic resonance (NMR) properties are those of a heavily doped semiconductor in the metallic limit, with Korringa relaxation and a small, negative, temperature-dependent Knight shift in BSC. From this, we make a detailed comparison with the isostructural tetradymite Bi$_{2}$Te$_{2}$Se (BTS) [McFadden et al., Phys Rev. B 99, 125201 (2019)]. In the magnetic BTM, the effects of the dilute Mn moments predominate, but remarkably the $^{8}$Li signal is not wiped out through the magnetic transition at 13 K, with a prominent critical peak in the SLR that is suppressed in a high applied field. This detailed characterization of the $^{8}$Li NMR response is an important step towards using depth-resolved $beta$-NMR to study the low-energy properties of the chiral topological surface state (TSS). With the bulk NMR response now established in several Bi$_{2}$Ch$_{3}$ tetradymite topological insulators (TIs), the prospect of directly probing their chiral TSS using the depth resolution afforded by $beta$-NMR remains strong.
427 - M. Ye , S. V. Eremeev , K. Kuroda 2011
Quasiparticle interference induced by cobalt adatoms on the surface of the topological insulator Bi$_{2}$Se$_{3}$ is studied by scanning tunneling microscopy, angle-resolved photoemission spectroscopy and X-ray magnetic circular dichroism. It is foun d that Co atoms are selectively adsorbed on top of Se sites and act as strong scatterers at the surface, generating anisotropic standing waves. A long-range magnetic order is found to be absent, and the surface state Dirac cone remains gapless. The anisotropy of the standing wave is ascribed to the heavily warped iso-energy contour of unoccupied states, where the scattering is allowed due to a non-zero out-of-plane spin.
Combining various two-dimensional materials into novel van der Waals (vdW) heterostructures has been shown to lead to new emergent quantum systems. A novel heterostructure composed of a vdW topological insulator (TI) such as Bi$_{2}$Se$_{3}$ with a q uantum spin liquid (QSL) such as $alpha$-RuCl$_{3}$ is of great interest for the potential for the chiral Dirac electrons in the TI surface states to interact strongly with the fractionalized fermionic spin excitations in the QSL. We report the heteroepitaxial growth of Bi$_{2}$Se$_{3}$ thin films on $alpha$-RuCl$_{3}$ as well as the characterization of their structural and electrical properties. Bi$_{2}$Se$_{3}$ thin films with an atomically smooth and uniform surface are grown by molecular beam epitaxy. The heterostructure exhibits a preferential epitaxial relationship corresponding to $(5 times 5)-$Bi$_{2}$Se$_{3}/(2sqrt{3} times 2sqrt{3})R30deg-alpha$-RuCl$_{3}$ commensurate supercells with a periodicity of 1.2 nm. The formation of the superlattice despite a lattice mismatch as large as 60% is attributed to the van der Waals heteroepitaxy. Magnetotransport measurements as a function of temperature show Bi$_{2}$Se$_{3}$ films grown on $alpha$-RuCl$_{3}$ are heavily $n$-doped, $n_{e}$ ~10$^{14}$ cm$^{-2}$, with mobility $mu$ ~450 cm$^{2}$ V$^{-1}$ s$^{-1}$ at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا