ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for topological surface states in amorphous Bi$_{2}$Se$_{3}$

112   0   0.0 ( 0 )
 نشر من قبل Paul Corbae
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crystalline symmetries have played a central role in the identification of topological materials. The use of symmetry indicators and band representations have enabled a classification scheme for crystalline topological materials, leading to large scale topological materials discovery. In this work we address whether amorphous topological materials, which lie beyond this classification due to the lack of long-range structural order, exist in the solid state. We study amorphous Bi$_2$Se$_3$ thin films, which show a metallic behavior and an increased bulk resistance. The observed low field magnetoresistance due to weak antilocalization demonstrates a significant number of two dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data is consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture resembling that of the surface state of crystalline Bi$_2$Se$_3$. These experimental results are consistent with theoretical photoemission spectra obtained with an amorphous tight-binding model that utilizes a realistic amorphous structure. This discovery of amorphous materials with topological properties uncovers an overlooked subset of topological matter outside the current classification scheme, enabling a new route to discover materials that can enhance the development of scalable topological devices.



قيم البحث

اقرأ أيضاً

738 - Sunghun Kim , M. Ye , K. Kuroda 2011
We have performed scanning tunneling microscopy and differential tunneling conductance ($dI/dV$) mapping for the surface of the three dimensional topological insulator Bi$_{2}$Se$_{3}$. The fast Fourier transformation applied to the $dI/dV$ image sho ws an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.
Using scanning tunneling spectroscopy we have studied the effects of nitrogen gas exposure on the bismuth selenide density of states. We observe a shift in the Dirac point which is qualitatively consistent with theoretical modeling of nitrogen bindin g to selenium vacancies. In carefully controlled measurements, Bi$_2$Se$_3$ crystals were initially cleaved in a helium gas environment and then exposed to a 22 SCFH flow of ultra-high purity N$_2$ gas. We observe a resulting change in the spectral curves, with the exposure effect saturating after approximately 50 minutes, ultimately bringing the Dirac point about 50 meV closer to the Fermi level. These results are compared to density functional theoretical calculations, which support a picture of $N_2$ molecules physisorbing near Se vacancies and dissociating into individual N atoms which then bind strongly to Se vacancies. In this interpretation, the binding of the N atom to a Se vacancy site removes the surface defect state created by the vacancy and changes the position of the Fermi energy with respect to the Dirac point.
201 - A. Kogar , S. Vig , A. Thaler 2015
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon p redicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, $chi (textbf{q},omega)$, at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.
217 - K. Miyamoto , A. Kimura , T. Okuda 2012
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and Bi$_2$Se$_2$Te. The highly spin-polarized natures are found to be persistent across the Dirac point in both compounds. This novel finding paves a pathway to extending their utilization of topological surface state for future spintronic applications.
Spontaneous rotational-symmetry breaking in the superconducting state of doped $mathrm{Bi}_2mathrm{Se}_3$ has attracted significant attention as an indicator for topological superconductivity. In this paper, high-resolution calorimetry of the single- crystal $mathrm{Sr}_{0.1}mathrm{Bi}_2mathrm{Se}_3$ provides unequivocal evidence of a two-fold rotational symmetry in the superconducting gap by a emph{bulk thermodynamic} probe, a fingerprint of nematic superconductivity. The extremely small specific heat anomaly resolved with our high-sensitivity technique is consistent with the materials low carrier concentration proving bulk superconductivity. The large basal-plane anisotropy of $H_{c2}$ is attributed to a nematic phase of a two-component topological gap structure $vec{eta} = (eta_{1}, eta_{2})$ and caused by a symmetry-breaking energy term $delta (|eta_{1}|^{2} - |eta_{2}|^{2}) T_{c}$. A quantitative analysis of our data excludes more conventional sources of this two-fold anisotropy and provides the first estimate for the symmetry-breaking strength $delta approx 0.1$, a value that points to an onset transition of the second order parameter component below 2K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا