ﻻ يوجد ملخص باللغة العربية
Crystalline symmetries have played a central role in the identification of topological materials. The use of symmetry indicators and band representations have enabled a classification scheme for crystalline topological materials, leading to large scale topological materials discovery. In this work we address whether amorphous topological materials, which lie beyond this classification due to the lack of long-range structural order, exist in the solid state. We study amorphous Bi$_2$Se$_3$ thin films, which show a metallic behavior and an increased bulk resistance. The observed low field magnetoresistance due to weak antilocalization demonstrates a significant number of two dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data is consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture resembling that of the surface state of crystalline Bi$_2$Se$_3$. These experimental results are consistent with theoretical photoemission spectra obtained with an amorphous tight-binding model that utilizes a realistic amorphous structure. This discovery of amorphous materials with topological properties uncovers an overlooked subset of topological matter outside the current classification scheme, enabling a new route to discover materials that can enhance the development of scalable topological devices.
We have performed scanning tunneling microscopy and differential tunneling conductance ($dI/dV$) mapping for the surface of the three dimensional topological insulator Bi$_{2}$Se$_{3}$. The fast Fourier transformation applied to the $dI/dV$ image sho
Using scanning tunneling spectroscopy we have studied the effects of nitrogen gas exposure on the bismuth selenide density of states. We observe a shift in the Dirac point which is qualitatively consistent with theoretical modeling of nitrogen bindin
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon p
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and
Spontaneous rotational-symmetry breaking in the superconducting state of doped $mathrm{Bi}_2mathrm{Se}_3$ has attracted significant attention as an indicator for topological superconductivity. In this paper, high-resolution calorimetry of the single-