ﻻ يوجد ملخص باللغة العربية
We investigate the impact of a rotating wall potential on perpendicular laser cooling in a Penning ion trap. By including energy exchange with the rotating wall, we extend previous Doppler laser cooling theory and show that low perpendicular temperatures are more readily achieved with a rotating wall than without. Detailed numerical studies determine optimal operating parameters for producing low temperature, stable 2-dimensional crystals, important for quantum information processing experiments employing Penning traps.
A direct numerical simulation of many interacting ions in a Penning trap with a rotating wall is presented. The ion dynamics is modelled classically. Both axial and planar Doppler laser cooling are modeled using stochastic momentum impulses based on
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well pot
Two-dimensional crystals of ions stored in Penning traps are a leading platform for quantum simulation and sensing experiments. For small amplitudes, the out-of-plane motion of such crystals can be described by a discrete set of normal modes called t
We present a versatile electric trap for the exploration of a wide range of quantum phenomena in the interaction between polar molecules. The trap combines tunable fields, homogeneous over most of the trap volume, with steep gradient fields at the tr
We describe a versatile planar Penning trap structure, which allows to dynamically modify the trapping conguration almost arbitrarily. The trap consists of 37 hexagonal electrodes, each with a circumcirle-diameter of 300 m, fabricated in a gold-on-sa