ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the surface states in Bi2Se3 using the Shubnikov-de Haas effect

148   0   0.0 ( 0 )
 نشر من قبل Michal Petrushevsky
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shubnikov-de Haas (SdH) oscillations are observed in Bi2Se3 flakes with high carrier concentration and low bulk mobility. These oscillations probe the protected surface states and enable us to extract their carrier concentration, effective mass and Dingle temperature. The Fermi momentum obtained is in agreement with angle resolved photoemission spectroscopy (ARPES) measurements performed on crystals from the same batch. We study the behavior of the Berry phase as a function of magnetic field. The standard theoretical considerations fail to explain the observed behavior.



قيم البحث

اقرأ أيضاً

We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa$_2$Cu$_4$O$_8$ (Y124). For field aligned along the c-axis, the frequency of the oscillations is $660pm 30$ T, which corresponds to $sim 2.4$ % of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be $2.7pm0.3$ times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa$_2$Cu$_3$O$_{6.5}$ (Y123-II). We show that although small Fermi surface pockets may be expected from band structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.
We have observed Shubnikov-de Haas oscillations in FeSe. The Fermi surface deviates significantly from predictions of band-structure calculations and most likely consists of one electron and one hole thin cylinder. The carrier density is in the order of 0.01 carriers/ Fe, an order-of-magnitude smaller than predicted. Effective Fermi energies as small as 3.6 meV are estimated. These findings call for elaborate theoretical investigations incorporating both electronic correlations and orbital ordering.
In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation, and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital angular momentum, and lattice degrees of freedom, understanding which is key for molecular magnets, nano-magneto-mechanics, spintronics, and ultrafast magnetism. Until now, the timescales of electron-to-lattice angular momentum transfer remain unclear, since modeling this process on a microscopic level requires addition of an infinite amount of quantum angular momenta. We show that this problem can be solved by reformulating it in terms of the recently discovered angulon quasiparticles, which results in a rotationally invariant quantum many-body theory. In particular, we demonstrate that non-perturbative effects take place even if the electron--phonon coupling is weak and give rise to angular momentum transfer on femtosecond timescales.
76 - Jinho Yang , Ki-seok Kim 2021
Emergent Lorentz symmetry and chiral anomaly are well known to play an essential role in anomalous transport phenomena of Weyl metals. In particular, the former causes a Berry-curvature induced orbital magnetic moment to modify the group velocity of Weyl electrons, and the latter results in the chiral magnetic effect to be responsible for a dissipationless longitudinal current channel of the bulk. In this study, we verify that intertwined these two effects can be measured in Shubnikov-de Haas (SdH) quantum oscillations, where a double-peak structure of the SdH oscillation appears to cause a kink in the Landau fan diagram. We examine three different cases which cover all possible experimental situations of external electric/magnetic fields and identify the experimental condition for the existence of the double-peak structure. We claim that interplay of the orbital magnetic moment and the chiral magnetic effect in SdH quantum oscillations is an interesting feature of the Weyl metal state.
The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semi-classical explanation of the effect exists, modern electr onic structure methods have not yet been applied to modelling the phenomenon. In this paper we investigate its microscopic origins by means of a non-collinear tight-binding model of an $textrm{O}_2$ dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. Avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We find also that the torque exerted on the nuclei by the electrons in a time-varying $B$ field is not only due to the EdH effect. Other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا