ﻻ يوجد ملخص باللغة العربية
Active galactic nuclei (AGN), powered by long-term accretion onto central supermassive black holes, produce relativistic jets with lifetimes of greater than one million yr that preclude observations at birth. Transient accretion onto a supermassive black hole, for example through the tidal disruption of a stray star, may therefore offer a unique opportunity to observe and study the birth of a relativistic jet. On 2011 March 25, the Swift {gamma}-ray satellite discovered an unusual transient source (Swift J164449.3+573451) potentially representing such an event. Here we present the discovery of a luminous radio transient associated with Swift J164449.3+573451, and an extensive set of observations spanning centimeter to millimeter wavelengths and covering the first month of evolution. These observations lead to a positional coincidence with the nucleus of an inactive galaxy, and provide direct evidence for a newly-formed relativistic outflow, launched by transient accretion onto a million solar mass black hole. While a relativistic outflow was not predicted in this scenario, we show that the tidal disruption of a star naturally explains the high-energy properties, radio luminosity, and the inferred rate of such events. The weaker beaming in the radio compared to {gamma}-rays/X-rays, suggests that radio searches may uncover similar events out to redshifts of z ~ 6.
We present deep infrared (Ks band) imaging polarimetry and radio (1.4 and 4.8 GHz) polarimetry of the enigmatic transient Swift J164449.3+573451. This source appears to be a short lived jet phenomenon in a galaxy at redshift z = 0.354, activated by a
We present continued radio and X-ray observations of the previously relativistic tidal disruption event (TDE) Swift J164449.3+573451 (sw) extending to about 9.4 years post disruption, as part of ongoing campaigns with the Jansky Very Large Array (VLA
We present continued multi-frequency radio observations of the relativistic tidal disruption event Sw1644+57 extending to dt~600 d. The data were obtained with the JVLA and AMI Large Array. We combine these data with public Swift/XRT and Chandra X-ra
We present continued radio and X-ray observations of the relativistic tidal disruption event Swift J164449.3+573451 extending to $delta t approx 2000$ d after discovery. The radio data were obtained with the VLA as part of a long-term program to moni
We present continued radio observations of the tidal disruption event SwiftJ164449.3+573451 extending to sim216 days after discovery. The data are part of a long-term program to monitor the expansion and energy scale of the relativistic outflow, and