ﻻ يوجد ملخص باللغة العربية
We present continued radio observations of the tidal disruption event SwiftJ164449.3+573451 extending to sim216 days after discovery. The data are part of a long-term program to monitor the expansion and energy scale of the relativistic outflow, and to trace the parsec-scale environment around a previously-dormant supermassive black hole (SMBH). The new observations reveal a significant change in the radio evolution starting at sim1 month, with a brightening at all frequencies that requires an increase in the energy by about an order of magnitude, and an overall density profile around the SMBH of rho propto r^{-3/2} (0.1-1.2 pc) with a significant flattening at rsim0.4-0.6 pc. The increase in energy cannot be explained with continuous injection from an L propto t^{-5/3} tail, which is observed in the X-rays. Instead, we conclude that the relativistic jet was launched with a wide range of Lorentz factors, obeying E(>Gamma) propto Gamma^{-2.5}. The similar ratio of duration to dynamical timescale for Sw1644+57 and GRBs suggests that this result may be applicable to GRBs as well. The radial density profile may be indicative of Bondi accretion, with the inferred flattening at rsim0.5 pc in good agreement with the Bondi radius for a sim10^6 M_sun black hole. The density at sim0.5 pc is about a factor of 30 times lower than inferred for the Milky Way galactic center, potentially due to a smaller number of mass-shedding massive stars. From our latest observations (sim216 d) we find that the jet energy is E_{iso}sim5x10^{53} erg (E_jsim2.4x10^{51} erg for theta_j=0.1), the radius is rsim1.2 pc, the Lorentz factor is Gammasim2.2, the ambient density is nsim0.2 cm^{-3}, and the projected size is r_{proj}sim25 microarcsec. Assuming no future changes in the observed evolution we predict that the radio emission from Sw1644+57 should be detectable with the EVLA for several decades, and will be resolvable with VLBI in a few years.
We present continued radio and X-ray observations of the relativistic tidal disruption event Swift J164449.3+573451 extending to $delta t approx 2000$ d after discovery. The radio data were obtained with the VLA as part of a long-term program to moni
We present continued radio and X-ray observations of the previously relativistic tidal disruption event (TDE) Swift J164449.3+573451 (sw) extending to about 9.4 years post disruption, as part of ongoing campaigns with the Jansky Very Large Array (VLA
A tidal disruption event (TDE) is an astronomical phenomenon in which a previously dormant black hole (BH) destroys a star passing too close to its central part. We analyzed the flaring episode detected from the TDE sources, Swift~J1644+57 and Swift
We present continued multi-frequency radio observations of the relativistic tidal disruption event Sw1644+57 extending to dt~600 d. The data were obtained with the JVLA and AMI Large Array. We combine these data with public Swift/XRT and Chandra X-ra
We present deep infrared (Ks band) imaging polarimetry and radio (1.4 and 4.8 GHz) polarimetry of the enigmatic transient Swift J164449.3+573451. This source appears to be a short lived jet phenomenon in a galaxy at redshift z = 0.354, activated by a