ﻻ يوجد ملخص باللغة العربية
It is shown that locally conformally flat Lorentzian gradient Ricci solitons are locally isometric to a Robertson-Walker warped product, if the gradient of the potential function is non null, and to a plane wave, if the gradient of the potential function is null. The latter gradient Ricci solitons are necessarily steady.
The local structure of half conformally flat gradient Ricci almost solitons is investigated, showing that they are locally conformally flat in a neighborhood of any point where the gradient of the potential function is non-null. In opposition, if the
We describe the structure of the Ricci tensor on a locally homogeneous Lorentzian gradient Ricci soliton. In the non-steady case, we show the soliton is rigid in dimensions three and four. In the steady case, we give a complete classification in dimension three.
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a $pp$-wave or a warped product.
We describe three-dimensional Lorentzian homogeneous Ricci solitons, showing that all types (i.e. shrinking, expanding and steady) exist. Moreover, all non-trivial examples have non-diagonalizable Ricci operator with one only eigenvalue.
We show that Lorentzian manifolds whose isometry group is of dimension at least $frac{1}{2}n(n-1)+1$ are expanding, steady and shrinking Ricci solitons and steady gradient Ricci solitons. This provides examples of complete locally conformally flat an