ترغب بنشر مسار تعليمي؟ اضغط هنا

Ricci Solitons on Lorentzian Manifolds with Large Isometry Groups

338   0   0.0 ( 0 )
 نشر من قبل Miguel Brozos-Vazquez
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that Lorentzian manifolds whose isometry group is of dimension at least $frac{1}{2}n(n-1)+1$ are expanding, steady and shrinking Ricci solitons and steady gradient Ricci solitons. This provides examples of complete locally conformally flat and symmetric Lorentzian Ricci solitons which are not rigid.



قيم البحث

اقرأ أيضاً

We describe three-dimensional Lorentzian homogeneous Ricci solitons, showing that all types (i.e. shrinking, expanding and steady) exist. Moreover, all non-trivial examples have non-diagonalizable Ricci operator with one only eigenvalue.
It is shown that locally conformally flat Lorentzian gradient Ricci solitons are locally isometric to a Robertson-Walker warped product, if the gradient of the potential function is non null, and to a plane wave, if the gradient of the potential func tion is null. The latter gradient Ricci solitons are necessarily steady.
We describe the structure of the Ricci tensor on a locally homogeneous Lorentzian gradient Ricci soliton. In the non-steady case, we show the soliton is rigid in dimensions three and four. In the steady case, we give a complete classification in dimension three.
139 - Mukut Mani Tripathi 2008
In $N(k)$-contact metric manifolds and/or $(k,mu)$-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with $V$ pointwise collinear with the structure vector field $xi $ are studied.
121 - Jiayin Pan 2020
We survey the results on fundamental groups of open manifolds with nonnegative Ricci curvature. We also present some open questions on this topic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا