ﻻ يوجد ملخص باللغة العربية
Memory trace analysis is an important technology for architecture research, system software (i.e., OS, compiler) optimization, and application performance improvements. Hardware-snooping is an effective and efficient approach to monitor and collect memory traces. Compared with software-based approaches, memory traces collected by hardware-based approaches are usually lack of semantic information, such as process/function/loop identifiers, virtual address and I/O access. In this paper we propose a hybrid hardware/software mechanism which is able to collect memory reference trace as well as semantic information. Based on this mechanism, we designed and implemented a prototype system called HMTT (Hybrid Memory Trace Tool) which adopts a DIMMsnooping mechanism to snoop on memory bus and a software-controlled tracing mechanism to inject semantic information into normal memory trace. To the best of our knowledge, the HMTT system is the first hardware tracing system capable of correlating memory trace with high-level events. Comprehensive validations and evaluations show that the HMTT system has both hardwares (e.g., no distortion or pollution) and softwares advantages (e.g., flexibility and more information).
The current mobile applications have rapidly growing memory footprints, posing a great challenge for memory system design. Insufficient DRAM main memory will incur frequent data swaps between memory and storage, a process that hurts performance, cons
While reduction in feature size makes computation cheaper in terms of latency, area, and power consumption, performance of emerging data-intensive applications is determined by data movement. These trends have introduced the concept of scalability as
Hardware flaws are permanent and potent: hardware cannot be patched once fabricated, and any flaws may undermine any software executing on top. Consequently, verification time dominates implementation time. The gold standard in hardware Design Verifi
Memory disaggregation has attracted great attention recently because of its benefits in efficient memory utilization and ease of management. So far, memory disaggregation research has all taken one of two approaches, building/emulating memory nodes w
An exponential growth in data volume, combined with increasing demand for real-time analysis (i.e., using the most recent data), has resulted in the emergence of database systems that concurrently support transactions and data analytics. These hybrid