ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases with Specialized Hardware/Software Co-Design

132   0   0.0 ( 0 )
 نشر من قبل Saugata Ghose
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An exponential growth in data volume, combined with increasing demand for real-time analysis (i.e., using the most recent data), has resulted in the emergence of database systems that concurrently support transactions and data analytics. These hybrid transactional and analytical processing (HTAP) database systems can support real-time data analysis without the high costs of synchronizing across separate single-purpose databases. Unfortunately, for many applications that perform a high rate of data updates, state-of-the-art HTAP systems incur significant drops in transactional (up to 74.6%) and/or analytical (up to 49.8%) throughput compared to performing only transactions or only analytics in isolation, due to (1) data movement between the CPU and memory, (2) data update propagation, and (3) consistency costs. We propose Polynesia, a hardware-software co-designed system for in-memory HTAP databases. Polynesia (1) divides the HTAP system into transactional and analytical processing islands, (2) implements custom algorithms and hardware to reduce the costs of update propagation and consistency, and (3) exploits processing-in-memory for the analytical islands to alleviate data movement. Our evaluation shows that Polynesia outperforms three state-of-the-art HTAP systems, with average transactional/analytical throughput improvements of 1.70X/3.74X, and reduces energy consumption by 48% over the prior lowest-energy system.



قيم البحث

اقرأ أيضاً

Tensor computations overwhelm traditional general-purpose computing devices due to the large amounts of data and operations of the computations. They call for a holistic solution composed of both hardware acceleration and software mapping. Hardware/s oftware (HW/SW) co-design optimizes the hardware and software in concert and produces high-quality solutions. There are two main challenges in the co-design flow. First, multiple methods exist to partition tensor computation and have different impacts on performance and energy efficiency. Besides, the hardware part must be implemented by the intrinsic functions of spatial accelerators. It is hard for programmers to identify and analyze the partitioning methods manually. Second, the overall design space composed of HW/SW partitioning, hardware optimization, and software optimization is huge. The design space needs to be efficiently explored. To this end, we propose an agile co-design approach HASCO that provides an efficient HW/SW solution to dense tensor computation. We use tensor syntax trees as the unified IR, based on which we develop a two-step approach to identify partitioning methods. For each method, HASCO explores the hardware and software design spaces. We propose different algorithms for the explorations, as they have distinct objectives and evaluation costs. Concretely, we develop a multi-objective Bayesian optimization algorithm to explore hardware optimization. For software optimization, we use heuristic and Q-learning algorithms. Experiments demonstrate that HASCO achieves a 1.25X to 1.44X latency reduction through HW/SW co-design compared with developing the hardware and software separately.
Tiled spatial architectures have proved to be an effective solution to build large-scale DNN accelerators. In particular, interconnections between tiles are critical for high performance in these tile-based architectures. In this work, we identify th e inefficiency of the widely used traditional on-chip networks and the opportunity of software-hardware co-design. We propose METRO with the basic idea of decoupling the traffic scheduling policies from hardware fabrics and moving them to the software level. METRO contains two modules working in synergy: METRO software scheduling framework to coordinate the traffics and METRO hardware facilities to deliver the data based on software configurations. We evaluate the co-design using different flit sizes for synthetic study, illustrating its effectiveness under various hardware resource constraints, in addition to a wide range of DNN models selected from real-world workloads. The results show that METRO achieves 56.3% communication speedup on average and up to 73.6% overall processing time reduction compared with traditional on-chip network designs.
Irreducible frequent patters (IFPs) are introduced for transactional databases. An IFP is such a frequent pattern (FP),(x1,x2,...xn), the probability of which, P(x1,x2,...xn), cannot be represented as a product of the probabilities of two (or more) o ther FPs of the smaller lengths. We have developed an algorithm for searching IFPs in transactional databases. We argue that IFPs represent useful tools for characterizing the transactional databases and may have important applications to bio-systems including the immune systems and for improving vaccination strategies. The effectiveness of the IFPs approach has been illustrated in application to a classification problem.
Artificial intelligence (AI) technologies have dramatically advanced in recent years, resulting in revolutionary changes in peoples lives. Empowered by edge computing, AI workloads are migrating from centralized cloud architectures to distributed edg e systems, introducing a new paradigm called edge AI. While edge AI has the promise of bringing significant increases in autonomy and intelligence into everyday lives through common edge devices, it also raises new challenges, especially for the development of its algorithms and the deployment of its services, which call for novel design methodologies catered to these unique challenges. In this paper, we provide a comprehensive survey of the latest enabling design methodologies that span the entire edge AI development stack. We suggest that the key methodologies for effective edge AI development are single-layer specialization and cross-layer co-design. We discuss representative methodologies in each category in detail, including on-device training methods, specialized software design, dedicated hardware design, benchmarking and design automation, software/hardware co-design, software/compiler co-design, and compiler/hardware co-design. Moreover, we attempt to reveal hidden cross-layer design opportunities that can further boost the solution quality of future edge AI and provide insights into future directions and emerging areas that require increased research focus.
Graphics Processing Units (GPUs) employ large register files to accommodate all active threads and accelerate context switching. Unfortunately, register files are a scalability bottleneck for future GPUs due to long access latency, high power consump tion, and large silicon area provisioning. Prior work proposes hierarchical register file to reduce the register file power consumption by caching registers in a smaller register file cache. Unfortunately, this approach does not improve register access latency due to the low hit rate in the register file cache. In this paper, we propose the Latency-Tolerant Register File (LTRF) architecture to achieve low latency in a two-level hierarchical structure while keeping power consumption low. We observe that compile-time interval analysis enables us to divide GPU program execution into intervals with an accurate estimate of a warps aggregate register working-set within each interval. The key idea of LTRF is to prefetch the estimated register working-set from the main register file to the register file cache under software control, at the beginning of each interval, and overlap the prefetch latency with the execution of other warps. We observe that register bank conflicts while prefetching the registers could greatly reduce the effectiveness of LTRF. Therefore, we devise a compile-time register renumbering technique to reduce the likelihood of register bank conflicts. Our experimental results show that LTRF enables high-capacity yet long-latency main GPU register files, paving the way for various optimizations. As an example optimization, we implement the main register file with emerging high-density high-latency memory technologies, enabling 8X larger capacity and improving overall GPU performance by 34%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا