ﻻ يوجد ملخص باللغة العربية
The fast solar winds high speeds and nonthermal features require that significant heating occurs well above the Suns surface. Two leading theories have seemed incompatible: low-frequency Alfvenic turbulence, which transports energy outwards but struggles to explain the observed dominance of ion over electron heating; and high-frequency ion-cyclotron waves (ICWs), which explain the heating but lack an obvious source. We unify these paradigms via the novel helicity barrier mechanism. Using six-dimensional plasma simulations, we show that in imbalanced turbulence (as relevant to the solar wind) the helicity barrier limits electron heating by inhibiting the turbulent cascade of energy to the smallest scales. The large-scale energy grows in time to eventually generate high-frequency fluctuations from low-frequency turbulence, driving ion heating by ICWs. The resulting turbulence and ion distribution function provide a compelling match to in-situ observations from Parker Solar Probe and other spacecraft, explaining, among other features, the steep transition range in the magnetic spectrum.
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kineti
The first two orbits of the Parker Solar Probe (PSP) spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 Rs). Here, we present an analysis of this data to study solar wind turbule
Knowing the lengthscales at which turbulent fluctuations dissipate is key to understanding the nature of weakly compressible magnetohydrodynamic turbulence. We use radio wavelength interferometric imaging observations which measure the extent to whic
A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfven-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflecti
One of the greatest challenges in solar physics is understanding the heating of the Suns corona. Most theories for coronal heating postulate that free energy in the form of magnetic twist/stress is injected by the photosphere into the corona where th