ﻻ يوجد ملخص باللغة العربية
We show via an explicit example that quantum anomalies can lead to decoherence of a single quantum qubit through phase relaxation. The anomaly causes the Hamiltonian to develop a non-self-adjoint piece due to the non-invariance of the domain of the Hamiltonian under symmetry transformation. The resulting decoherence originates completely from the dynamics of the system itself and not, as usually considered, from interactions with the environment.
The long-lived, efficient storage and retrieval of a qubit encoded on a photon is an important ingredient for future quantum networks. Although systems with intrinsically long coherence times have been demonstrated, the combination with an efficient
We present a theory of the quantum vacuum radiation that is generated by a fast modulation of the vacuum Rabi frequency of a single two-level system strongly coupled to a single cavity mode. The dissipative dynamics of the Jaynes-Cummings model in th
We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a
This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where
The interaction of a quantum system with the environment leads to the so-called quantum decoherence. Beyond its fundamental significance, the understanding and the possible control of this dynamics in various scenarios is a key element for mastering