ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery and evolution of the new black hole candidate Swift J1539.2-6227 during its 2008 outburst

135   0   0.0 ( 0 )
 نشر من قبل Hans Krimm
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a good opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasi-periodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.



قيم البحث

اقرأ أيضاً

229 - P.A. Curran 2011
Here we summarise the Swift broadband observations of the recently discovered X-ray transient and black hole candidate, XTE J1752-223,obtained over the period of outburst from October 2009 to June 2010. We offer a phenomenological treatment of the sp ectra as an indication of the canonical spectral state of the source during different periods of the outburst. We find that the high energy hardness-intensity diagrams over two separate bands follows the canonical behavior, confirming the spectral states. From Swift-UVOT data we confirm the presence of an optical counterpart which displays variability correlated, in the soft state, to the X-ray emission observed by Swift-XRT. The optical counterpart also displays hysteretical behaviour between the states not normally observed in the optical bands, suggesting a possible contribution from a synchrotron emitting jet to the optical emission in the rising hard state. Our XRT timing analysis shows that in the hard state there is significant variability below 10Hz which is more pronounced at low energies, while during the soft state the level of variability is consistent with being minimal.These properties of XTE J1752-223 support its candidacy as a black hole in the Galactic centre region.
MAXI J1813-095 is an X-ray transient discovered during an outburst in 2018. We report on X-ray and optical observations obtained during this event, which indicate that the source is a new low-mass X-ray binary. The outburst lasted ~70 d and peaked at Lx(0.5-10keV)~7.6 x 10^36 erg s-1, assuming a distance of 8 kpc. Swift/XRT follow-up covering the whole activity period shows that the X-ray emission was always dominated by a hard power-law component with a photon index in the range of 1.4-1.7. These values are consistent with MAXI J1813-095 being in the hard state, in agreement with the ~30 per cent fractional root-mean-square amplitude of the fast variability (0.1-50 Hz) inferred from the only XMM-Newton observation available. The X-ray spectra are well described by a Comptonization emission component plus a soft, thermal component (kT ~0.2 keV), which barely contributes to the total flux (<8 per cent). The Comptonization y-parameter (~1.5), together with the low temperature and small contribution of the soft component supports a black hole accretor. We also performed optical spectroscopy using the VLT and GTC telescopes during outburst and quiescence, respectively. In both cases the spectrum lack emission lines typical of X-ray binaries in outburst. Instead, we detect the Ca II triplet and H_alpha in absorption. The absence of velocity shifts between the two epochs, as well as the evolution of the H_alpha equivalent width, strongly suggest that the optical emission is dominated by an interloper, likely a G-K star. This favours a distance >3 kpc for the X-ray transient.
205 - P.A. Curran 2010
We present Swift broadband observations of the recently discovered black hole candidate, X-ray transient, XTE J1752-223, obtained over the period of outburst from October 2009 to June 2010. From Swift-UVOT data we confirm the presence of an optical c ounterpart which displays variability correlated, in the soft state, to the X-ray emission observed by Swift-XRT. The optical counterpart also displays hysteretical behaviour between the states not normally observed in the optical bands, suggesting a possible contribution from a synchrotron emitting jet to the optical emission in the rising hard state. We offer a purely phenomenological treatment of the spectra as an indication of the canonical spectral state of the source during different periods of the outburst. We find that the high energy hardness-intensity diagrams over two separate bands follows the canonical behavior, confirming the spectral states. Our XRT timing analysis shows that in the hard state there is significant variability below 10Hz which is more pronounced at low energies, while during the soft state the level of variability is consistent with being minimal. These properties of XTE J1752-223 support its candidacy as a black hole in the Galactic centre region.
We characterized the broad-band X-ray spectra of Swift J1745-26 during the decay of the 2013 outburst using INTEGRAL ISGRI, JEM-X and Swift XRT. The X-ray evolution is compared to the evolution in optical and radio. We fit the X- ray spectra with phe nomenological and Comptonization models. We discuss possible scenarios for the physical origin of a ~50 day flare observed both in optical and X- rays ~170 days after the peak of the outburst. We conclude that it is a result of enhanced mass accretion in response to an earlier heating event. We characterized the evolution in the hard X-ray band and showed that for the joint ISGRI-XRT fits, the e-folding energy decreased from 350 keV to 130 keV, while the energy where the exponential cut-off starts increased from 75 keV to 112 keV as the decay progressed.We investigated the claim that high energy cut-offs disappear with the compact jet turning on during outburst decays, and showed that spectra taken with HEXTE on RXTE provide insufficient quality to characterize cut-offs during the decay for typical hard X-ray fluxes. Long INTEGRAL monitoring observations are required to understand the relation between the compact jet formation and hard X-ray behavior. We found that for the entire decay (including the flare), the X-ray spectra are consistent with thermal Comptonization, but a jet synchrotron origin cannot be ruled out.
We present the radio and X-ray monitoring campaign of the 2019/2020 outburst of MAXI J1348-630, a new black hole X-ray binary (XRB) discovered in 2019 January. We observed MAXI J1348-630 for $sim$14 months in the radio band with MeerKAT and the Austr alia Telescope Compact Array (ATCA), and in the X-rays with MAXI and Swift/XRT. Throughout the outburst we detected and tracked the evolution of the compact and transient jets. Following the main outburst, the system underwent at least 4 hard-state-only re-flares, during which compact jets were again detected. For the major outburst, we observed the rise, quenching, and re-activation of the compact jets, as well as two single-sided discrete ejecta, launched $sim$2 months apart and travelling away from the black hole. These ejecta displayed the highest proper motion ($gtrsim$100 mas day$^{-1}$) ever measured for an accreting black hole binary. From the jet motion, we constrain the ejecta inclination and speed to be $leq$46$^{circ}$ and $geq$0.69 $c$, and the opening angle and transverse expansion speed of the first component to be $leq$6$^{circ}$ and $leq$0.05 $c$. We also infer that the first ejection happened at the hard-to-soft state transition, before a strong radio flare, while the second ejection was launched during a short excursion from the soft to the intermediate state. After traveling with constant speed, the first component underwent a strong deceleration, which was covered with unprecedented detail and suggested that MAXI J1348-630 could be located inside a low-density cavity in the interstellar medium, as already proposed for XTE J1550-564 and H1743-322.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا