ﻻ يوجد ملخص باللغة العربية
We discuss the effect of stochastic resonance in a simple model of magnetic reversals. The model exhibits statistically stationary solutions and bimodal distribution of the large scale magnetic field. We observe a non trivial amplification of stochastic resonance induced by turbulent fluctuations, i.e. the amplitude of the external periodic perturbation needed for stochastic resonance to occur is much smaller than the one estimated by the equilibrium probability distribution of the unperturbed system. We argue that similar amplifications can be observed in many physical systems where turbulent fluctuations are needed to maintain large scale equilibria.
We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence are coupled in a shell model, with given dynamo constrains in the large scales. We consider the case of a low Prandtl number fluid for which the inertial range
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a conf
Many cell functions are accomplished thanks to intracellular transport mechanisms of macromolecules along filaments. Molecular motors such as dynein or kinesin are proteins playing a primary role in these processes. The behavior of such proteins is q
Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincare map, describing evolution from an impact to the next impact, is described. Displacement of the limiter
We investigate the role of magnetic helicity in promoting cyclic magnetic activity in a global, 3D, magnetohydrodynamic (MHD) simulation of a convective dynamo. This simulation is characterized by coherent bands of toroidal field that exist within th