ﻻ يوجد ملخص باللغة العربية
We denote by Conc(A) the semilattice of all finitely generated congruences of an (universal) algebra A, and we define Conc(V) as the class of all isomorphic copies of all Conc(A), for A in V, for any variety V of algebras. Let V and W be locally finite varieties of algebras such that for each finite algebra A in V there are, up to isomorphism, only finitely many B in W such that A and B have isomorphic congruence lattices, and every such B is finite. If Conc(V) is not contained in Conc(W), then there exists a semilattice of cardinality aleph 2 in Conc(V)-Conc(W). Our result extends to quasivarieties of first-order structures, with finitely many relation symbols, and relative congruence lattices. In particular, if W is a finitely generated variety of algebras, then this occurs in case W omits the tame congruence theory types 1 and 5; which, in turn, occurs in case W satisfies a nontrivial congruence identity. The bound aleph 2 is sharp.
We denote by Conc(L) the semilattice of all finitely generated congruences of a lattice L. For varieties (i.e., equational classes) V and W of lattices such that V is contained neither in W nor its dual, and such that every simple member of W contain
For a class V of algebras, denote by Conc(V) the class of all semilattices isomorphic to the semilattice Conc(A) of all compact congruences of A, for some A in V. For classes V1 and V2 of algebras, we denote by crit(V1,V2) the smallest cardinality of
We study the class of finite lattices that are isomorphic to the congruence lattices of algebras from a given finitely generated congruence-distributive variety. If this class is as large as allowed by an obvious necessary condition, the variety is c
We denote by Conc(A) the semilattice of compact congruences of an algebra A. Given a variety V of algebras, we denote by Conc(V) the class of all semilattices isomorphic to Conc(A) for some A in V. Given varieties V1 and V2 varieties of algebras, the
We prove that the space of coinvariants of functions on an affine variety by a Lie algebra of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the theorem include Poisson (or more generally Jacobi) varieties wit