ﻻ يوجد ملخص باللغة العربية
We report results from grand-canonical Monte Carlo simulations of methane and carbon dioxide adsorption in structure sI gas hydrates. Simulations of pure component systems show that all methane sites are equivalent, while carbon dioxide distinguishes between two types of sites, large or small. The adsorbed mixture can be regarded as ideal, as long as only large sites are occupied. A strong preference is demonstrated for methane, when the smaller sites become filled. The molar heat of adsorption of methane decreases with composition, while the molar heat of adsorption for carbon dioxide passes an extremum, essentially in accordance with the observation on the site sizes. The Helmholtz energies of the hydrate with CO$_2$-CH$_4$ gas mixture for temperatures between 278 and 328 K and pressures between 10$^4$ and 10$^9$ Pa indicate that certain mixtures are more stable than others. The results indicate that a thermodynamic path exists for conversion of a pure methane hydrate into a pure carbon dioxide hydrate without destroying the hydrate structure.
With exceptional electrical and mechanical properties and at the same time air-stability, layered MoSi2N4 has recently draw great attention. However, band structure engineering via strain and electric field, which is vital for practical applications,
The bilayer heterostructures composed of an ultrathin ferromagnetic metal (FM) and a material hosting strong spin-orbit (SO) coupling are principal resource for SO torque and spin-to-charge conversion nonequilibrium effects in spintronics. We demonst
We present a comprehensive first principles electronic structure study of the magnetoelastic and magnetostrictive properties in the Co-based Co$_2$XAl (X = V, Ti, Cr, Mn, Fe) full Heusler compounds. In addition to the commonly used total energy appro
Experiments of Electron Spin Resonance (ESR) were performed on Co$% ^{2+}$ substituting Zn$^{2+}$ or Mg$^{2+}$ in powder samples of Zn$_2$(OH)PO$_4$ and Mg$_2$(OH)AsO$_4$. The observed resonances are described with a theoretical model that considers
Sn$_{0.97-y}$Co$_{0.03}$Ni$_{y}$O$_{2}$ (0 $leq y leq$ 0.04) nanocrystals, with average crystallite size in the range of 7.3 nm ($y$=0.00) to 5.6 nm ($y$=0.04), have been synthesized using pH-controlled chemical co-precipitation technique. The non-st