ﻻ يوجد ملخص باللغة العربية
Applying external strain is an efficient way to manipulate the site preference of dopants in semiconductors, however, the validity of the previous continuum elastic model for the strain influence on the doping forma- tion energy is still under debate. In this paper, by combining quantum mechanical theoretical analysis and first-principles calculations, we show that if the occupation change of different orbitals caused by the strain is negligible, the continuum elastic model is valid, otherwise it will fail. Our theory is confirmed by first-principles calculation of Mn-doped GaAs system. Moreover, we show that under compressive strain the hole density, thus the Curie temperature TC can increase in Mn-doped spintronic materials.
Oxygen vacancy formation energy is an important quantity for enabling fast oxygen diffusion and oxygen catalysis in technologies like solid oxide fuel cells. Both previous literature in various systems and our calculations in LaMnO3, La0.75Sr0.25MnO3
Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as
We explore the charge transport mechanism in organic semiconductors based on a model that accounts for the thermal intermolecular disorder at work in pure crystalline compounds, as well as extrinsic sources of disorder that are present in current exp
The doping and strain effects on the electron transport of monolayer MoS_2 are systematically investigated using the first-principles calculations with Boltzmann transport theory. We estimate the mobility has a maximum 275 cm^2/(Vs) in the low doping
We investigate the modification of the intrinsic carrier noise spectral density induced in low-doped semiconductor materials by an external correlated noise source added to the driving high-frequency periodic electric field. A Monte Carlo approach is