ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic transport and quantum localization effects in organic semiconductors

113   0   0.0 ( 0 )
 نشر من قبل Simone Fratini
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the charge transport mechanism in organic semiconductors based on a model that accounts for the thermal intermolecular disorder at work in pure crystalline compounds, as well as extrinsic sources of disorder that are present in current experimental devices. Starting from the Kubo formula, we develop a theoretical framework that relates the time-dependent quantum dynamics of electrons to the frequency-dependent conductivity. The electron mobility is then calculated through a relaxation time approximation that accounts for quantum localization corrections beyond Boltzmann theory, and allows us to efficiently address the interplay between highly conducting states in the band range and localized states induced by disorder in the band tails. The emergence of a transient localization phenomenon is shown to be a general feature of organic semiconductors, that is compatible with the bandlike temperature dependence of the mobility observed in pure compounds. Carrier trapping by extrinsic disorder causes a crossover to a thermally activated behavior at low temperature, which is progressively suppressed upon increasing the carrier concentration, as is commonly observed in organic field-effect transistors. Our results establish a direct connection between the localization of the electronic states and their conductive properties, formalizing phenomenological considerations that are commonly used in the literature.



قيم البحث

اقرأ أيضاً

The electronic wavefunctions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic d evices such as organic solar cells. In these devices, charge transport and interfaces between multiple layers occur along the thickness or vertical direction, and thus such electronic interactions are crucial in determining the device properties. Here, we introduce a new in-situ spectroscopic ellipsometry data analysis method called DART with the ability to directly probe electronic coupling due to intermolecular interactions along the thickness direction using vacuum-deposited organic semiconductor thin films as a model system. The analysis, which does not require any model fitting, reveals direct observations of electronic coupling between frontier orbitals under optical excitations leading to delocalization of the corresponding electronic wavefunctions with thickness or, equivalently, number of molecules away from the interface in C60 and MeO-TPD deposited on an insulating substrate (SiO2). Applying the same methodology for C60 deposited on phthalocyanine thin films, the analyses shows strong, anomalous features - in comparison to C60 deposited on SiO2 - of the electronic wavefunctions corresponding to specific excitation energies in C60 and phthalocyanines. Translation of such interactions in terms of dielectric constants reveals plasmonic type resonance absorptions resulting from oscillations of the excited state wavefunctions between the two materials across the interface. Finally, reproducibility, angstrom-level sensitivity and simplicity of the method are highlighted showcasing its applicability for studying electronic coupling between any vapor-deposited material systems where real-time measurements during deposition are possible.
Long-range and fast transport of coherent excitons is important for development of high-speed excitonic circuits and quantum computing applications. However, most of these coherent excitons have only been observed in some low-dimensional semiconducto rs when coupled with cavities, as there are large inhomogeneous broadening and dephasing effects on the exciton transport in their native states of the materials. Here, by confining coherent excitons at the 2D quantum limit, we firstly observed molecular aggregation enabled super-transport of excitons in atomically thin two-dimensional (2D) organic semiconductors between coherent states, with a measured a high effective exciton diffusion coefficient of 346.9 cm2/sec at room temperature. This value is one to several orders of magnitude higher than the reported values from other organic molecular aggregates and low-dimensional inorganic materials. Without coupling to any optical cavities, the monolayer pentacene sample, a very clean 2D quantum system (1.2 nm thick) with high crystallinity (J type aggregation) and minimal interfacial states, showed superradiant emissions from the Frenkel excitons, which was experimentally confirmed by the temperature-dependent photoluminescence (PL) emission, highly enhanced radiative decay rate, significantly narrowed PL peak width and strongly directional in-plane emission. The coherence in monolayer pentacene samples was observed to be delocalized over 135 molecules, which is significantly larger than the values (a few molecules) observed from other organic thin films. In addition, the super-transport of excitons in monolayer pentacene samples showed highly anisotropic behaviour. Our results pave the way for the development of future high-speed excitonic circuits, fast OLEDs, and other opto-electronic devices.
Charge transport in disordered organic semiconductors occurs by hopping of charge carriers between localized sites that are randomly distributed in a strongly energy dependent density of states. Extracting disorder and hopping parameters from experim ental data like temperature dependent current-voltage characteristics typically relies on parametrized mobility functionals that are integrated in a drift-diffusion solver. Surprisingly, the functional based on the extended Gaussian disorder model (eGDM) has been extremely successful at this, despite it being based on the assumption of nearest neighbor hopping (nnH) on a regular lattice. We here propose a variable range hopping (VRH) model that has been integrated in a freeware drift-diffusion solver. The mobility model has been calibrated using kinetic Monte Carlo calculations and shows good agreement with the Monte Carlo calculations over the experimentally relevant part of the parameter space. The model is applied to temperature-dependent space charge limited current (SCLC) measurements of different systems. In contrast to the eGDM, the VRH model provides a consistent description of both p-type and n-type devices. We find a critical ratio of aNN/$alpha$ (mean inter-site distance / localization radius) of ~3 below which hopping to non-nearest neighbors becomes important around room temperature and the eGDM cannot be used for parameter extraction. Typical (Gaussian) disorder values in the range 45-120 meV are found, without any clear correlation with photovoltaic performance when the same active layer is used in an organic solar cell.
Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. W e use this dry chemistry to introduce topological variations in a conjugated poly-para-phenylene chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unravelled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the bandgap is tunable by altering the linear segments length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled Quantum Dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.
114 - S. Fratini , D. Mayou , 2015
Charge transport in crystalline organic semiconductors is intrinsically limited by the presence of large thermal molecular motions, which are a direct consequence of the weak van der Waals inter-molecular interactions. These lead to an original regim e of transport called textit{transient localization}, sharing features of both localized and itinerant electron systems. After a brief review of experimental observations that pose a challenge to the theory, we concentrate on a commonly studied model which describes the interaction of the charge carriers with inter-molecular vibrations. We present different theoretical approaches that have been applied to the problem in the past, and then turn to more modern approaches that are able to capture the key microscopic phenomenon at the origin of the puzzling experimental observations, i.e. the quantum localization of the electronic wavefuntion at timescales shorter than the typical molecular motions. We describe in particular a relaxation time approximation which clarifies how the transient localization due to dynamical molecular motions relates to the Anderson localization realized for static disorder, and allows us to devise strategies to improve the mobility of actual compounds. The relevance of the transient localization scenario to other classes of systems is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا