ﻻ يوجد ملخص باللغة العربية
Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state and history of the source. In particular, black-hole XRBs emit compact, steady radio jets when they are in the so-called hard state, the jets become eruptive as the sources move toward the soft state, disappear in the soft state, and re-appear when the sources return to the hard state. On the other hand, jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Significant phenomenology has been accumulated so far regarding the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. Our aim is to investigate whether the phenomenology regarding the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. It has been shown that the so-called Poynting-Robertson Cosmic Battery (PRCB) explains in a natural way the formation of magnetic fields in the disks of AGN and the ejection of jets. We investigate whether the PRCB can also explain the formation, destruction, and variability of jets in XRBs. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the radio jet. The disk-jet connection in XRBs is explained in a natural way using the PRCB.
Compact, continuously launched jets in black hole X-ray binaries (BHXBs) produce radio to optical-infrared synchrotron emission. In most BHXBs, an infrared (IR) excess (above the disc component) is observed when the jet is present in the hard spectra
Infrared interferometry is a new frontier for precision ground based observing, with new instrumentation achieving milliarcsecond (mas) spatial resolutions for faint sources, along with astrometry on the order of 10 microarcseconds. This technique ha
The aim of this review is to describe the nature, formation and evolution of the three kinds of high mass X-ray binary (HMXB) population: i. systems hosting Be stars (BeHMXBs), ii. systems accreting the stellar wind of supergiant stars (sgHMXBs), and
We have identified 55 candidate high-mass X-ray binaries (HMXBs) in M33 using available archival {it HST} and {it Chandra} imaging to find blue stars associated with X-ray positions. We use the {it HST} photometric data to model the color-magnitude d
This chapter discusses the implications of X-ray binaries on our knowledge of Type Ibc and Type II supernovae. X-ray binaries contain accreting neutron stars and stellar--mass black holes which are the end points of massive star evolution. Studying t