ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Binaries

284   0   0.0 ( 0 )
 نشر من قبل Jorge Casares
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This chapter discusses the implications of X-ray binaries on our knowledge of Type Ibc and Type II supernovae. X-ray binaries contain accreting neutron stars and stellar--mass black holes which are the end points of massive star evolution. Studying these remnants thus provides clues to understanding the evolutionary processes that lead to their formation. We focus here on the distributions of dynamical masses, space velocities and chemical anomalies of their companion stars. These three observational features provide unique information on the physics of core collapse and supernovae explosions within interacting binary systems. There is suggestive evidence for a gap between ~2-5 Msun in the observed mass distribution. This might be related to the physics of the supernova explosions although selections effects and possible systematics may be important. The difference between neutron star mass measurements in low-mass X-ray binaries (LMXBs) and pulsar masses in high-mass X-ray binaries (HMXBs) reflect their different accretion histories, with the latter presenting values close to birth masses. On the other hand, black holes in LMXBs appear to be limited to <~12 Msun because of strong mass-loss during the wind Wolf-Rayet phase. Detailed studies of a limited sample of black-hole X-ray binaries suggest that the more massive black holes have a lower space velocity, which could be explained if they formed through direct collapse. Conversely, the formation of low-mass black holes through a supernova explosion implies that large escape velocities are possible through ensuing natal and/or Blaauw kicks. Finally, chemical abundance studies of the companion stars in seven X-ray binaries indicate they are metal-rich (all except GRO J1655-40) and possess large peculiar abundances of alpha-elements (Abridged)



قيم البحث

اقرأ أيضاً

High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the tra nsient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some detail whereas the optical and infrared properties are briefly discussed.
462 - Navin Sridhar 2021
The discovery of periodicity in the arrival times of the fast radio bursts (FRBs) poses a challenge to the oft-studied magnetar scenarios. However, models that postulate that FRBs result from magnetized shocks or magnetic reconnection in a relativist ic outflow are not specific to magnetar engines; instead, they require only the impulsive injection of relativistic energy into a dense magnetized medium. Motivated thus, we outline a new scenario in which FRBs are powered by short-lived relativistic outflows (``flares) from accreting black holes or neutron stars, which propagate into the cavity of the pre-existing (``quiescent) jet. In order to reproduce FRB luminosities and rates, we are driven to consider binaries of stellar-mass compact objects undergoing super-Eddington mass-transfer, similar to ultraluminous X-ray (ULX) sources. Indeed, the host galaxies of FRBs, and their spatial offsets within their hosts, show broad similarities with ULXs. Periodicity on timescales of days to years could be attributed to precession (e.g., Lens-Thirring) of the polar accretion funnel, along which the FRB emission is geometrically and relativistically beamed, which sweeps across the observer line of sight. Accounting for the most luminous FRBs via accretion power may require a population of binaries undergoing brief-lived phases of unstable (dynamical-timescale) mass-transfer. This will lead to secular evolution in the properties of some repeating FRBs on timescales of months to years, followed by a transient optical/IR counterpart akin to a luminous red nova, or a more luminous accretion-powered optical/X-ray transient. We encourage targeted FRB searches of known ULX sources.
Ultra-compact X-ray binaries (UCXBs) are low-mass X-ray binaries with hydrogen-deficient mass-donors and ultra-short orbital periods. They have been suggested to be the potential Laser Interferometer Space Antenna (LISA) sources in the low-frequency region. Several channels for the formation of UCXBs have been proposed so far. In this article, we carried out a systematic study on the He star donor channel, in which a neutron star (NS) accretes matter from a He main-sequence star through Roche-lobe overflow, where the mass-transfer is driven by gravitational wave radiation. Firstly, we followed the long-term evolution of the NS+He main-sequence star binaries by employing the stellar evolution code Modules for Experiments in Stellar Astrophysics, and thereby obtained the initial parameter spaces for the production of UCXBs. We then used these results to perform a detailed binary population synthesis approach to obtain the Galactic rates of UCXBs through this channel. We estimate the Galactic rates of UCXBs appearing as LISA sources to be $sim3.1-11.9, rm Myr^{-1}$ through this channel, and the number of such UCXB-LISA sources in the Galaxy can reach about $1-26$ calibrated by observations. The present work indicates that the He star donor channel may contribute significantly to the Galactic UCXB formation rate. We found that the evolutionary tracks of UCXBs through this channel can account for the location of the five transient sources with relatively long orbital periods quite well. We also found that such UCXBs can be identified by their locations in the mass-transfer rate versus the orbital period diagram.
The INTEGRAL archive developed at INAF-IASF Milano with the available public observations from late 2002 to 2016 is investigated to extract the X-ray properties of 58 High Mass X-ray Binaries (HMXBs). This sample consists of sources hosting either a Be star (Be/XRBs) or an early-type supergiant companion (SgHMXBs), including the Supergiant Fast X-ray Transients (SFXTs). INTEGRAL light curves (sampled at 2 ks) are used to build their hard X-ray luminosity distributions, returning the source duty cycles, the range of variability of the X-ray luminosity and the time spent in each luminosity state. The phenomenology observed with INTEGRAL, together with the source variability at soft X-rays taken from the literature, allows us to obtain a quantitative overview of the main sub-classes of massive binaries in accretion (Be/XRBs, SgHMXBs and SFXTs). Although some criteria can be derived to distinguish them, some SgHMXBs exist with intermediate properties, bridging together persistent SgHMXBs and SFXTs.
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or cold gas), either enshrouding the whole binary systems, or surrounding the sources within their close environment. These unique observations allow us to better characterize the nature of these HMXBs, to constrain the link with their environment (impact and feedback), and finally to get a better understanding of the formation and evolution of such rare and short-living supergiant HMXBs in our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا