ﻻ يوجد ملخص باللغة العربية
This article describes a moving-windowed autocorrelation technique which, when applied to an asteroseismic Fourier power spectrum, can be used to automatically detect the frequency of maximum p-mode power, large and small separations, mean p-mode linewidth, and constrain the stellar inclination angle and rotational splitting. The technique is illustrated using data from the CoRoT and Kepler space telescopes and tested using artificial data.
Asteroseismology is well-established in astronomy as the gold standard for determining precise and accurate fundamental stellar properties like masses, radii, and ages. Several tools have been developed for asteroseismic analyses but many of them are
We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from
Cosmological neutrinos have their greatest influence in voids: these are the regions with the highest neutrino to dark matter density ratios. The marked power spectrum can be used to emphasize low density regions over high density regions, and theref
In this paper, we propose efficient probabilistic algorithms for several problems regarding the autocorrelation spectrum. First, we present a quantum algorithm that samples from the Walsh spectrum of any derivative of $f()$. Informally, the autocorre
With the observations of an unprecedented number of oscillating subgiant stars expected from NASAs TESS mission, the asteroseismic characterization of subgiant stars will be a vital task for stellar population studies and for testing our theories of