ﻻ يوجد ملخص باللغة العربية
In this paper, we propose efficient probabilistic algorithms for several problems regarding the autocorrelation spectrum. First, we present a quantum algorithm that samples from the Walsh spectrum of any derivative of $f()$. Informally, the autocorrelation coefficient of a Boolean function $f()$ at some point $a$ measures the average correlation among the values $f(x)$ and $f(x oplus a)$. The derivative of a Boolean function is an extension of autocorrelation to correlation among multiple values of $f()$. The Walsh spectrum is well-studied primarily due to its connection to the quantum circuit for the Deutsch-Jozsa problem. We extend the idea to Higher-order Deutsch-Jozsa quantum algorithm to obtain points corresponding to large absolute values in the Walsh spectrum of a certain derivative of $f()$. Further, we design an algorithm to sample the input points according to squares of the autocorrelation coefficients. Finally we provide a different set of algorithms for estimating the square of a particular coefficient or cumulative sum of their squares.
I offer a case that quantum query complexity still has loads of enticing and fundamental open problems -- from relativized QMA versus QCMA and BQP versus IP, to time/space tradeoffs for collision and element distinctness, to polynomial degree versus
In this paper, we study efficient algorithms towards the construction of any arbitrary Dicke state. Our contribution is to use proper symmetric Boolean functions that involve manipulations with Krawtchouk polynomials. Deutsch-Jozsa algorithm, Grover
We generalize the PAC (probably approximately correct) learning model to the quantum world by generalizing the concepts from classical functions to quantum processes, defining the problem of emph{PAC learning quantum process}, and study its sample co
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm
We define and study the complexity of robust polynomials for Boolean functions and the related fault-tolerant quantum decision trees, where input bits are perturbed by noise. We compare several different possible definitions. Our main results are *