ﻻ يوجد ملخص باللغة العربية
Recently, Dammak and coworkers (H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.J. Greffet. Quantumthermal bath for molecular dynamics simulation. Phys. Rev. Lett., 103:190601, 2009.) proposed that the quantum statistics of vibrations in condensed systems at low temperature could be simulated by running molecular dynamics simulations in the presence of a colored noise with an appropriate power spectral density. In the present contribution, we show how this method can be implemented in a flexible manner and at a low computational cost by synthesizing the corresponding noise on the fly. The proposed algorithm is tested for a simple harmonic chain as well as for a more realistic model of aluminium crystal. The energy and Debye-Waller factor are shown to be in good agreement with those obtained from harmonic approximations based on the phonon spectrum of the systems. The limitations of the method associated with anharmonic effects are also briefly discussed. Some perspectives for disordered materials and heat transfer are considered.
We present a method for performing atomistic spin dynamic simulations. A comprehensive summary of all pertinent details for performing the simulations such as equations of motions, models for including temperature, methods of extracting data and nume
We have extended our recent molecular-dynamic simulations of memristors to include the effect of thermal inhomogeneities on mobile ionic species appearing during operation of the device. Simulations show a competition between an attractive short-rang
High energy physics has a constant demand for random number generators (RNGs) with high statistical quality. In this paper, we present ROOTs implementation of the RANLUX++ generator. We discuss the choice of relying only on standard C++ for portabili
Molecular dynamics simulations on tensile deformation of initially defect free single crystal copper nanowire oriented in <001>{100} has been carried out at 10 K under adiabatic and isothermal loading conditions. The tensile behaviour was characteriz
The heat flux autocorrelation functions of carbon nanotubes (CNTs) with different radius and lengths is calculated using equilibrium molecular dynamics. The thermal conductance of CNTs is also calculated using the Green-Kubo relation from the linear